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ABSTRACT

The basic problem considered is the design of an optimal
control for a system subjected to disturbances. Although deterministic
disturbances are discussed, thz majority of the work and the three
examples deal with random or stochastic disturbancec. The principal
contention of this work is that one cannot determine an "optimal"

control for a system without optimizing a performance criterion which
7 2 mIasure of the performance of the entire system. Thke Max-Ranking

-

Performance Criterion which is deveioped Lcrz hee the caxa llity for
considering a wide variety of system variables. The use of this criterion

does not depend upon any knowledge of the system interactions; the
designer need only present his specifications for the system operation

in the form of a ranking array.

The nonlinear systems studied here are analyzed using e
statistically equivalent linear system. This follows the work of Kezakov

and Booton.

Random search techniques are 1+ sed with the Max-Ranking Criterion
and the linearized analysis approach to produce the optirum system. A
simple, but efficient method of random search is developed. Results are
obtained to show the expected rate of ccavergence of this type of search
for simple functions.

These methods are then applied to three systems which are sub-
Jected tc random disturbences: the design of a three-—arameter control
for a third-order system; thec design of a five-paramet:r control for the
roll control of a submarine; and the design of a nine-parameter control
for the coupled pitch-heave control of a submarine.
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Nomenclature

The general nomenclature used throughout this work is listed

here. The particular usage, including subscripting, is defined where

it is used.

E( )
h( )

Cy

K
“r

expected or mean value
system impulse response
verformance index
control parameter

statistically equivalent
linear gain

exponent in the exponential
search protability

number of search parameters

aumbe~ of random choices

probability density

autocorrelationrn function

Iaplace Transform Operator
power spectral density
system variables

variance

frecaency



1.0 Introduction

One of the principal objectives of a wide variety of control
systems is to minimize the detrimental effects which external disturbances
have upon the overall performance of the system. In many instances, it
1s sufficient to design a control which causes the system to recover in
some optimal fashion from a step or impulse or other deterministic dis-
turbance. An example of this is the design of a control for a heat
exchanger which is subjected to sudden large changes in heat load. In
other cases the control must respond optimally to disturbances of &
continuous, long-term, random nature. An example of this is the control
of the motion of a ship in a rendom sesa.

This work deals primarily with the design of optimal controls
for systems subjected to this latter type of continuous, stochastic
disturbance. Some aspects of this work are equally appliceable to toth
types of disturbances. Where this occurs, suggestions for the applicetion
will be discussed.

The general problem of optimal control is approached here frou
an overall system point-of-view. It is the principal contention of this
vork that in order to truly speak of the "optimal control"” of a system,
it is necessary to optimize & performance criterion which deals in some
manner with the performance of fhe entire system. This approach is
quite obvious and straightforward in theory; the difficulty lies in
defining a performance criterion which is capable of describing the
performance of the entire system. It is felt that the Multiple-Parameter,
Max-Ranking Criterion introduced in Chapter 2 is .i least a step toward

this goal.
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The selection of an optimal control is determined through &
three-ctep process:

1. the choice of an optimization criterion,

2. the choice of the mathematical model and analytical

approach, and

3. the choice of an optimization technique.
These three operaticns are treated in Chapters 2, 3, and 4 respectively.

In Chapter 5, the methods arrived at in the previous three
chapters are applied to three practical problems. In the first exarple,
& relatively simple, three-parameter, nonlinear control is designed for
a second order systen subjected to a random input and the results are
compared with other methods. In the second, a five-parameter, non-
linear cortroller is designed for the roll control of a éubmarine sub-
Jected to a random sea. Finally, & nine-parameter, nonlinear controller
1s chosen for the coupled pitch-heave control of a submarine in a random
sea,

It 18 presumed that the reader has a basic knowledge of the
response of linear systems to random or stochastic input signals.
Many good texts(l’ 2, 3) are aveilable in this area and no attempt will

oe mede to duplicate this information in this publicetion.

2. Best Available Copy
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2.0 Optimization Criterion

One of the most important steps in any optimization process
is the choice nf the optimization or performence criterlion. It can
be safely stated that if the analytical and optimization technlques are
adequate, the choice of the optimization criterion will completely
determine the final system.

This may appear to be belaboring an obviocus point, however
one need not look very deeply into the literature in the field of
optimal control to see that all too many good analytical efforis are
performed on the basis of grossly oversimplified performance criteria.
The reason for this is partly historical and partially due to mathe-

matical expediency, as the following sections show.

2.1 Performence Crit<ria for Randomly Disturbed Systems

When a system 1s disturbed by & random procesa, the exmct
time history or the system output camnot be predicted. However, since
some statistical informmtiorn is known about the 1nput disturbance, it
is usually possible to predict certain statistical properties of the
output. Tbe tvo most common and most easily determined statistical
quantities are the mean and the varisnce {or mean squarej. For non-
Geussian random processes, higjher order moments mey be of interest.
For Geussisn (or normal) probebility distributions, the mesn and the
variance completely describe the distri™ition. Since this work desl:
solely with systems subjected t¢ zero-mean Gaussian disturbances, and
since an analytical technique based upom statistically equivalent

-3-
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linearization will be employed, the variance will provide an effective

statistical measure of the system varisbles for the cases studled here.

2.1.1 Mean Square Error Performence Criterla

In the early 1940's, there existed in the field of commm-
ication the problem of extracting as much information as possible from
& commmications signal which had been distorted by noise. Wiener(h)
proposed & method for optimizing this process. HIis procedure was
tased upon the s of the so-called "minimun mean square error"” perfor-
mance criterion (see Pigure 1). Weiner defined an ervor which was the
difference between the actwml output signal and the desired output
signal (which is,for this particular case, the original signal). He
proyposed that the optimum system is that system which has the minirmum
value of the mean square error.

Two questions generally arise concerning the wisdom of the
choice o;é this particular performance criterion.

1. Why was & statistical measure of the errof .the only

system variable chosen?

2. 1Is this the best statistical measure that can be

chosen?

The answer. to the first question is quite_simple. The only
objective that was considered important in this phase of the commm-
ication system design was to get as much information as possible out of
a mixture of signal and noise. The error signal defined above is as

effective a2 measure of the efficiency ~f this process as can be found.

-4 -
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The answer to the second question took somewbat longer to
be formulated. Initially, & number of people suggested that other
nonlinear statistical functions of the error woul? be better. However,
in 1958 Sherman(s) showed that most of these more complicated perfor-
mence criteria would produce & filter identical to that determined
using Wiener's method. Sherman stated:

‘ "Thus, in the cagse of a Gaussian process,.....
the solution of the Wiener integral equation (the

predictor which minimizes E (e2)) also automatically
minimizes E [@(e)] where ¢ obeys ths relationships

ple) = p(-e) 2 0;
22 20 = () 29 (e))."

(E (x) 18 defined as the expected (or mean) value of x.)

Thus we see that for this perticular problem the minirmum
mean square error performance criterion was a good choice.

Wiener's use of the minimum mean square error performance
criteria was carried over into the field of autometic control by
Phi111psC 7V ana ma11(8), Phillips suggested a metkod for determining
the coefficients of a linesr control system so &s to produce a minimum
value of the mean square error. He developed & means to integrate
the general polynomial form of the power spectral demnsity in order to

glve the mean square value in closed form. This aliows one to employ

conventional methods of calculus to obtain & minimm.
In order to consider more effectively what the various per-

formance criteria mean in terms of actuml control systems, let us consider

-6 - Best Available Copy



the control system of Mgure 2. This control is used to position a
second order system subjected to & random disturbance. The coat.oller
utilizes displacement error (e) feedback. The comtrol force (?) is com-
strained to vithin given limits (: ’mx)’ but all other components are
considered to be linear. (The Laplace Transform Operstor, s | , 18
used to denote differentiation with respect 1> time.)

Let us first consider a minimm mean squar: displacement
error (ai) performance criterion. It can be readily shown that the
mean square displacement error is zero (and obviously a minimue) if
K. and F__ are inofinite, This s of Ve.ys little practical interest,
since it implies infinite control forces.

To bypass this difficulty, a number of people have suggested
restricting the value of me to practical values. Nov, & xiniszam
value of g, is produced by an infinite value of ‘D' This required a
"bang-bang" or infinite gsin, amplitude-limited controller. Yor the |
control of Figure 2, it also implies infinite comtrol pover. This
practical "detail"” can be circumvented by placing a constraint on the
maximun allowable control power. However, by this time it is obvious
that tue basic design decisions such as meximm control force and mex-
imum control power are be.ing made without the bemefit of the optimira-
tion prccess. The result of this is that one or more optimum coeffice
ients are determined for & control system vhose major components are
already specified. There is no guarsntee that the entire cuntro’ systea

is optimsl. For this type nf pavblem, ve conclude that & minimum mean

- T~
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square errox performance rcriterion is not sufficiently genersl to be of
much assistance in the determination of a practicel optimml comtrol

design.

A number of other criteria wvhich utilize some fxction cf the
error have been suggested. References 9, 10, 11, and 12 cover many of
these criteria. They will not be diascussed here, since they all bebave
similarly to the minimun mean square error criterion. In fuct, for
linear systems subjected to Jaussian disturbances, it has bLasen lhmm(u)
that the minimization of the mean square er.or is equivalent to the

minimization of many of these other criteria also.

; 2.1.2 Multiple-Parameter Weighting Criteris

| ~Cne step tovard the employment of the syste.s concept in

! optinlrzetion 18 & @irect extemsion of the work of nnlup-(". Here,
the mean square error perfcrmmnce criterion is replaced by one which
includes more of the system characteristics. Jor example, referring
again to the ccntrol of Figure 2, it is possible to uinimize the

function J, vhere,

BET AT L ST - | (1)

The mean square values of acceleration, velocity, displacement error

and cortrol forcs are respectively represented by ci, cs. 02 and

]
2
Gy The terms G, Gy ¢3, m%mvwmmma
can be constants or functions of their associsted mean square system

b 7" BestAvailable Copy




variables. If the a's are constants and the system 1s lineer, J can
be minimized using standard methods of calculus. It can be shown that

increasing‘gn and Fhax tends to decrease , and Za wvhile

Spr Ty
increasing Op+ Thus 1if all a's are positive, non-zerc and finlte, &
minimum velue of J will exist where Ops Oy» G end Op 8re finite
and non-z~ro. This,at least, is a step in the right direction.
Unfortunately, the process of choosing velues for the four
a's is quite difficult. An intelligent choice of these weighting para-
meters must be based upon & thorough knowledge of the system behavior,
including the various interactions within the system. This is some-
times possible for simple systems, but it becomes far too difficult as
the complexity is increased only slightly.
An alternate approach is the following:
1. meke the best possible estimate of the
. welghting perameters;
2. determine the values of the control para-
meters which minimize this value of J;
3. determine the mean square wvalues of the
necessary system variables;
4, revise the weighting parameters to place
more emphasis on those system variables whose
mean square values are too high;
5. repeat steps 2 through 4 until a satisfactory

system behavior is obtained.

0. Best Available Copy



This is certainly not a desirable syproach, but 1t is ahout
the only one which will give satisfactory results with this method of
miltiple-parameter veighting when little is known about the system

be=havior ahead of time.

2.1.3 Newton's Multinle Parameter Criteria v

Ilevton( ¢ ) recognized the limitations of the mitimum rean
square error and suggested that the mean square error should be mine
imized while six_mltaneoualy limiting the mean square values of other
important system variables (such &8s control forces, etc.). This
requires introducing one or more lagrange Multipliers. If the on-
trol comiiguration is iknown, the n control parameters can be

decermined from the n equations of the form,

[0y o a2 APy k)) - 0 (@)

J=1

where oi(xl. i A .Kn) is the mean square error expressed as & function
of the n control parameters (x.l...xi...xh), Ais the Lagrange Multi-
plier and the m constraints are expressed by the m f‘unctioxia »
cpJ(xl...Ki...Kn) = 0. This, hovever, is exactly equivalent to the
multiple-parameter, weighting criterion (equation 1) with oy equal to
unity. The remaining veighting parameters become coastants equal to the
Lagrange Multipliers of equation (2). Thus, this method has the same

deficiencies as the multiple-parameter veighting criterion.

-1l -
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Newton went beyond thic point and chose to leave the con-
trol configuration unspecified. He used Calculuc of Variations
techniques with the Lagrange Multiplilers to find the optimum linear
control fun~tion. This approack is certainly superior to any methods
thus far'discuseed, since it determines both the control configuration
and the control perameters. However, it does 1ot solve the problem of

choosing the weighting functions or Lagrange Multipliers.

2.1.4 Multiple Parameter Ma --Ranking Criterion

The method deccribed in this section is based upon the employ-
ment of & ranking array. The essential factor ! .re is that each cystenm
attribute which is to be cousidered in the optimizeilon is rated against
an absolute scale of desirability. An example of a possible ranking array

for the system of Figure 2 is shown below.

Desirability (1=1) (1=2) (1=3) (1=4)
J(1) °A Oy o, Op

(ft/sec‘?) (£t/sec) (£t) (1bg)
Most Desirable 0 : 0 0 0 0
1 3 8 0.1 10
2 3 10 .2 20
3 4 12 0.3 Lo
Least De:irable L 8 16 0.h4 80

Table 1
Semple Ranking Array Best Available Cor

-12 -
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The most desirable values of the root mesn square (r.m.s.)
acceleration, velccity, displacement error, and cantrol force are all
zero. This is, of course, an impossible goal as long as there is any
disturberce force. The final row of the table can be readily filled
in also. This rov represents the maximum value of each of the system
variables which is acceptable.

The remainder of the table is constructed vith as many rowvs

ac the designer feels are necessary to adequately describe the various

3 levels of desirability of the system responsc. T.e only external restric-
tion placed on the table's construction is that each column must be
either monotonically non-increasing or monotonically non-decreasing.

Each r.m.‘s. value 1s chosen to be as desirsble as all other values in

the same row. For exampl-, consider row 3 (J(1) = 2). A wvalue of

o, =3 f‘t/seca i considered as beirg ss desirab.e an end result as

O r
The construction of this ranking sarray should be carried out

Oy

with a great deal of thought. The results of the entire optimization
study will depend upon the values selected at this time. In order to
construct the ranking array, the designer must have a good appreciation
of the system capabilities and requirements. However, he need not be

familiar with how the various system variables are related to each other

and to each of the several control pnn-éter-. This function 1ir taken
care of automatically by the amalytical snd optimization stulies which

are conducted in the following phases of this work.

13 - ;
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Once the ranking array is set up, it can be applied in &
straightforwvard and simple manner. The first step is to assign values
to each J(1) for any given set of system variables. This can be
accomplished by any interpolation scheme whicn the designer desires
to employ.

As an example, let us refer back to Table 1. Lot us suppose
that for a given system with a given disturbance a certain set c¢i con-

trol parameters gives the following results:

o, = k.0 ft/seca
A

= /
Oy L.0o ft/sec
g, = 0.15 ft

Linear interpolation in Table 1 gives the following values of each J(i):

J(1) = 3.0 (corresponding to CA k.o ft/sece)

J(2) = 0.5 (corresponding to oy = L.0 ft/sec)
J(3) = 1.5 (corresponding to g, = 0.15 £t)
J(4) - 2.0 (corresponding to Op = 20.0 1bg)

This essentially esteclished the desirabiiity (for this particular case)
of each of the‘fcur resulting system variables. Two different approaches
were taken in an attempt at assigning an overall system desirabllity

based upon these separate values of the individusl J(1i)'s.

Best Available Copy
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The first method defines the oversll system desirsbility
as the average desirability of the resulting individusl system variables.

For the particular example being considered, this gives:

L
_Js - 4 Z J(1) = (3.0 + 0.5 + 1.5 + 2.0) « 1.T5
1=l

This method is exactly equivalent to the multiple-parameter weighting
criterion (equation (1)) whose weigbting paremet.rs a.e functions iecter-
mined by the rﬁnking array. Thie method has cnly one advantage over the
wveighting meihod, a methodology for determining the weighting functions.
The principal disadvantage is that there is an implicit veighting between
the columms of the ranking array. To i1llustrate this, consider the |

system of Flgure 2, vhere increasing xD vill cause an increase in Cp

while decreasing 9, cha.nd Tee The miaimm value of the system
desirability (.‘..") based upon this averaging method would be one which
produced low values of J(1), J(2), and J(3) at the expense of higher
values of J(4). | i
A much better method 18 one which equates the overall system ’
desirability with the value of J(1i) corresponding tc the least desir-
able of the resulting individual attributes of the system. Thais, in
effect, states that the system is no more desirable than its least
desirable attribute. This method has been termed Max-Ranking. The

Max-Ranking measure of system desirability (J“) is defined simply as:

o
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JM - [J(i)] max

Thus, for the example being used here, JM is,

Iy = [J(l) = 3.0; J(2) = 0.5; J(3) = 1.5; J(&) = 2.0] -

or

Iy = J(1) = 3.0

The criterion of optimality is that JM should be minimized. This tends
to produce a final system with two or sometimes more of the values of
the individual J(i)'s being equal.

The Max-Ranking method has several adva.atages over other per-
formance criteria. First, the desired response of the various system
variables can be specified in a form which is familiar to the designer.
This is simply because the designer will (or should) have an awareness
of what value of r.m.s. displacement error or acceleration or control
force would be considered good or poor for his particular application.

Secondly, there is no restriction on the number of system
variables which can be considered in the ranking array. Any variables
included in lae ranking array wh.-h ¢c not turn out to limit the final
design are automatically excluded 'n Lhe optimization.

For some types of optimi.eiion technigues, the computation

time can be reduced compared to scmc other multiple perameter methods.

16 - Best Available Copy
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This 18 because each individual J(i{) can be compared to the previous
minimum value. As soon as a value of J(1) is round which exceeds the
previous minim.n. the control parameter sct can be discarded. There

is no resson to calculate all the remsining vnluea‘ as would be required
for e multiple-parameter weighting criterion.

The Max-Rapnking method has one disadvantage for small simple
systems. Because of the possible nonlinearity of the ranking array and
the inherent nonlinearity of the maximum selection, it i3 almost always
impossible to obtain a closed-form algebraic solution for JM' This,
coupled with the rfact that the seversl partial derivatives of JM taken
at the minimum point are, in general, discontinuous usually disallows
any way of minimi.cing JM based upon calculus. The discontinuities in the
partial derivatives also add tc this to make steepest ascent. techniques
quite difficult to apply.

This, at first, appears to be a severe disadvantage. However,
optimization techniques based upon calculus and steepest ascent become
very unwieldy anyhow as one attempts to optimize large order systems
which have several control parameters. Chapter 4 deals with this prob-
lem of choosing an optimization technique and reaches the conclusion
that for larger systems, thie Max-Ranking method is sctually simpler to
work with than other Multiple-Parameter methods.

The Max-Ranking method 1s applied in each of the examples 1nv
Chapter 5. Some additional practical guidance on the use of this method

is discussed at that point.
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2 2 Pe.formance Criteria for Systems with Deterministic Disturbances

This topic will only be dealt with briefly, since Gibson 1213)
and Wolkovitch(lh) have already covered most of the standard criteria
quite effectively. What will be discussed is the fact that the Muitipie-
Parameter, Max-Fenking Method can also be applied to a system subjected
to deterministic disturbances.

Let us consider again the simple positionirg control system
of Figure 2. However, this time we will assume that the dlsturbance is
deterministic and of short duration. (As a metter of fact, the system
disturbance could be a step, ramp or other known change in the desired
displacement.) Some ﬁeasures of system response which are of value for
this case include:

l. 1integral square error

2. 1intagral time aweraged error

3. settling time

k. percent overshoot

5. maximm control force
6. meximum control power

maximum acceleration.

-4

These or other meaningful parameters can be used for the
several headings of the runking array. Rumbers which describe the
desirability of thes~ parameters for a particular disturbance wouw.d
then be filled in &s indicated welsre in Section 2.1.4. Optimization
methods which are described in Chapter 4 can be employed to optimize the

velue of overall system desirability (JM).

Best Available Copy
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A further extension of this is %o consider a system which
is subjectad to a contimuous, rendom disturbance while attempting to
follow deterministic changes in the desired displacement. If & ohse
existed wvhere the specification on both of these requiresmnta were
restrictivs, & joint Max-Bscking Array cen be onstructed which
contsins both stochastic and deterministic msasures of system response.
For each set of control parameters, the response to both the rendom
disturbance .nd the determiniatic command input can be calculated and

en overall “ystem deairability based on the tws calculations.




3.0 Analytical Techniques

This chapter deals with the problem of determining the
response of a particular type of nonlinear system Lo a stochastic dis-
turbance. The nonlinearity which is considered is the symmetric,
unity-gain, unity-amplitude, saturating element whose output (Y) can

be described by the following function of the input (X):

+]1 forX2>+1
Y = X for ] xl. <+1 (3)

-1 forx<-1

| The general form of the symmetric saturating element can be

expressed by adding two linear gain terms tc the basic unity seaturating
element as shown in Figure 3. The upper and lover saturating limits are
: X, end the gain in the central linear region is the product of K
and K, . |

Two approaches to the general problem are discussed. Section
3.1 deals with direct analog and digital similation and Section 3.2
considers the problem from the point-of-view of statistically equivalent

linearization.

3.1 Simidation Techniques

Similation methods are usually used for complex or nonlinear
systems which cannot be handled readily by the more casily applied
linear techniques. For the type of problem thet is being studied here,

the:e ar~ two additional factors which must be considered. First,

Best Available Copy
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since the input disturbance is stochastic, it will be necessary to run
the simulation for & time which will be long ~nough to assure accurate
mean square values of the system variables. Secondly, it may be necess
to test a large number of control parametsr combinations in order to
determine the optimum set.

The use of analog simlat'cn wes ruled cut because of the
lengthy time required to rtnd-an optimum. With the available facilities
individual run times at the order of a few minutes would be the best
that could be expected. The fact that severel thousand of these indi-
vidual runs are required for three or four perameter optimization
problems leads to tke inevitable conclusion that much higher speed anala
equipment is required for this type of work.

On the other hand, the very requirements which caugsed the
rejection of the use of analog similation faver the uee of high speed
digital calculation. Present day high speed digital computers have no
trouble simulating complex, nonlinear systems. The major problems of
this method are the choice of the type and length of the random input
disturbance and the choice of the comﬁutins increment to be‘used in the
calculation.

™his method shows s.ificient potential to merit. 13 retertlon

at this time. It is compered with linearized methods in Section 3.3.

et

i

o L i

C ] i B e, B

4 ,J *é [ % I f e !, ’

St

el f e
b R, A Gk (s

b




3.2 Linesrized Approach

A second approach to the problem is to replace the nonlinear
element by a linear element which spproximates the behavior of the non-
linearity. This allows the problem to be sclved by conventional linear
techniques.

For systems subjected to deterministic disturtencec, the des-
cribing f'unction(l3’ 15) can be used., Stochastically disturbed syastems,
neccssitate the use of a method of linearization that produces a lincar
element which is, in some fashion, statistically equivalent to the
original nonlinearity. The problem was studied irdependently by

(16) 18).

and Booton(l7’

Kazakov Kazakov stated the general prublem

of finding the unknown moments of the probabillity distribution at. the
output of the noniinearity as fuiuctions of the momenta'at the 'input.
For a linear system tmé ia relatively simple, since the protability
moments of the random ﬁmctiona are linearly trnusfonhed; the nth order
| output moment is dependent only upon the nth order input moment, Mor
the nonlinear case, the a®® order cutput moment is algo & function of
the lower and higher order noments of the i.put. If the input to the
nonlinearity has a Gaussian (or normal) probability distribution, the
first tvo moments (mean and variance) completely describe this distr.-
bution. Thus, all output momeuts are completely determined by these
two input moments.

Kanzakov G.iines three means of linearization. In the first,

linear ccnstants are chossn which produce the same values of the first
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and second momentc &s are produced by the nonlineerity. The second
method was also suggested by Booton and, in the United States, is
usually referred to as Booton's method. This approach mirimizes the
mean square difference between the output of the lineer and ncniincar
elemepts. The third method of Kazakov simply averages the result: of
(16)

the first two linearization metrods. Kazakov lists these equiv-
alent gains for a wide variety of static nonlinearities which are
subjected to a Geussian input.

For the symmetric, unity-gein, unity-amplitude, saturating
element of equation (3), which is subjected to a8 zero mean, Gaussiar
input with variance, LY the equivalent gain calculated by the first

method (KﬁQ1) can be shown to be:

Koy = i—{).»c(c:,z[-l)erf(ﬂ‘l )

%
(%)
1
- Ecxe 2cx2 }%
The seconé approach {Booton's Method) produces,
' 1
KEQ.? = erf ( ) (5)

12 o
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The third method glves,

These three functions are plotted in Figure 4. Kazakov
shows that, for a Qaussian input, KEQ). is the upper luimit and \:@
is the lower limit on the actual equivalent grin, with X'EQ3
approximating the relationship best over the full range of ...

‘When nonlinearities occur within feedback control :=ystems,
there is no guarantee that the input to the nonlinesarity is Gaussian,
since the non-Gaussian output from the nonlinearity is fed cack through
the system to the input. Originally, it was felt that the application
would be limited to nonlinearitics which are only "slighily” nonlinesr
§o that the Gaussian probability distribution would not be messurably
altered. Subsequently, it was observed that even severely distorted
signals were again Qaussian after passing through, Tor example, two
simple low pass filters of the form 1/(® + a).

The reason for this is best explsiped by considering time
domain analysis(lg). The response of a system, y(t), cen be calculated

from the convolution (or supe -position) integral,

. +
A
PPV AVE Lo
vit) = 5 h(t - 7)) x(7) ar {1,
- X
(% - T is the system response to #- lmpulse at tume L = o

ER S WO RPN
Ll 1 IiTAAT

£

aignal.
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This integral "weights” past values of X(r) according to h(t - 7;
and then sums these results over all past history. In his sense, T
‘e analogous to weighting and summing & large number of individual
signals, which, according to the Central Limit Theorem, shouid pro-
duce a Gaussian probadbility distribution.

The degr > to which the output approaches & Tmussian disiri-
buticn depends upon the type of system. The impulse response cf e
simple gain is an inpulse gt time ¢t = <T. Thus, this convolution ince-
grel only se:, . .3 X(T) at one period >f time so that the probability
distribution form remains unchanged. Conversely, a &lmple integraticn
glves & uniform impulse response for all T less that t. This coavolu-
tion samples all previous values of X(r) ‘undformly, and 8s & comsequence
alvays produces a pure Gaussian output probability dietribtution. In
between these two extremes different types of filters produce a varying
tendency for a return to fiaussian distribution. A simple lag with its

impulse response,

h(t-’r)se‘“(t'v) for 1 <t
(8)
h(t - 1) =0 T> t,
samples primarily in the vicinity of 7 = t end therefore produces &
smaller rectoration o the (sussian distribution thsn, for instance,
‘woosoopie ags. Two equal, first-order lags have an inpulse response

-3
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of,

B(t ~ 1) = (t - r)eET) (9)

wbich produces a wider sampling displaced somewhat from T - t. There-
fore, a qualitative measure of the tendency for returning to a Gaussisan
probability distribution can be obtained by looking &t the impulse
response of the filter.

One other problem exists which is peculiar to this type of
optimization study. One of the end results of optim zetion will very
likely be the specification of the optimum linear gain for the generel
saturating nonlinearity shown ir Figure S. Since only the -alues of

qx ’ K3 and Oy will be known, it 18 necessary to work backuerds to
a d

determine Kl, Kﬁq and Ké.
| Figure 5 shows the steps involved in lineerizing the general
1imiting element. Figure 4 expresses the relationship between the

three different, "equivalent"” linear gains and the parameter 8,

1
B = —— (10)
1??oxb
Since oxb will not, in general, be known, it is necessary to express
these equivalent gains in terms of oy - If we define a parameter Yy
a

ecual to,

Y = (11)
-{_2-‘1(3 oy

8

- 28 -
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we s¢< that,

= (12
This now allows us to calculate the - equivalent gains as &
function of y, by using Pigure L. These resvlts ere plotted in Figure

6. 8ince X. and & will be known from the optimization results, the

3 Xg

equivalent gain can now be determined directly from the saturation
Umt, K,.

It is interesting to note that easch curve of Figure 6 has &
minimum value of y for which & velue of KEQ exists. PFor the first,
equal variance method, this value of v is fr§72 It is readily seen

that this corresponds to & value of equal tc unity. 8ince the

cxc
meximur value that Xc can attain is unity, it 1s obvious that its

r.m.s. value can never exceed unity., The second method gives this
1limiting value of y as {nY2. This corresponds to & maximum value of
Oy of ‘1755;\ This points out thevfact that the mean square output
ofcthe linear and nonlinear elements will not, in general, be equal for
this method. This difference, of course, criginates from the assumption
basing statistical equivelence on a minimum mean square error. For this
type of nonlin~arity, this difference can be almost totally attribut 4
to the large fourth order probability moment which is present in the
nonlinearity Sutput. This component 1s ignored by the first, equal

variance, method.

3.3 Cowperison of Simuletion and Linearization Techniques
Two aspects of the employment of these two approaches will te

ierusseq here. The first deals with hov readily eech zethod may be

Best Available Copy
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adapted for digital computer calculatior. The second i3 concerned

with a comparison of the computation time required by the two methods.

3.3.1 Adaptability to Digital Computer Calculation

_Any method of digital computer simulation requires the use
of some type of finite difference calculation method. One of the more
critical steps with finite difference approaches is the choice of the
time increment to be used in the calculation. Time intervals which are
too long leed to inaccuracies or even completely erronevus results. If
the time interval chosen is shorter than is necessary, long computation
times will result.

In optimization studies 1t is sometimes necessary to vary the
control parameters over wide ranges. This can cause the system's
ratural frequencies'to vary widely and result in the additional require
‘ment that a satisfactory vamlue of the time interval be determined for
each set of control parameters which 18 tried. This complicates the
computer program and can add a significant amount of computation time
to the solution of a problem.

If a linearized solution 1s used, finite dirrerencevtechniqpet
may not be required, Appendix E of Newton, Gould, and Kaia:r(ao) lists
the general algebreic solutions of the mean square values for first
through terth order systems. These are in a form which is readily
adaptable to digital computer calculation. If these equations are used,

two very impor-.ant facts must be remembered:




1. These equations do not apply to unstable systems.
Therefore, stability must be checked by means of the
Routh or other criterion before using them.

2. Rourd-off error can be a problem with the higher
order systems. It 18 generally recommended thet the
equatione for seventh through tenth order systems
should not be used unless double accuracy (16 pluce)
computer calculation methods are emloyad(zl) .

For high order systems, it may be simpler and quicker to use
finite dAifference integration of the general integral,

+i®

% * BT et ateeT o (13)
“Jm ’

than to employ double accuracy calcﬁ.htion methods. ’;im_ct m‘.:ém;
tion is particularly simple if the input disturbance has a narrov band

power density spectrum This permits equation (13) to be raduced to:

L,
2 1 c(jw) c(-Jw ‘
"x"?j o) Al-Ju) (%)
Ll

where Ll and L2 represent the lower and upper frequency limits of the
narrov band power density spectrum of the system input.

If, however, the input specirum is considerably wider than
the expected frequency response of the system tranfer function, the

problem is more difficult. In this case, the peaks of the output
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pover spectrum may vary considerably due to changes in the control
parameters. One now has the cholce »f using finite difference infe-
gration with a small frequency increment over a wide range of frequencie
or tailoring the finite difference integration to match each particular
output power spectrum. The first method resulis in longer computation

times, while the second requires a more complex computer program.

3.3.2 Computation Tim~ Requirements

Although it {s rather ridiculous to speak of the computation
time for an 'a’ersge’ nth order system, it 18 nccessary to have some
way of comparing the several analytical methods to determine which can
give results in a reasonadble period of time. For this reason, some

estimates of computation time for the IBM TO94 computer have becn made

~ based on the following assumptions:

v

1. ‘The time required to determine the coefficlents
of the nth order transfer fuaction is equal to the
time that it takes to evaluate the corresponding

tr
n order equation of Appendix E of Newton, Gould,

and Kaiser(ao).

(This turns out to be reesonably
accurate for the 31d, 6tb, and 10th order systems
studied in Chapter S.)

2. Finite difference integration of the powerABpectrum
will require an average of fifty points.

3. The computation time of simulation methods is pro-

portional to the order of the system.




The results for the algebraic evaluation and integration
methods were obtained for a single mean square value (m = 1) and for
the calculation of n mean square values (m = n).

The simulation approach automatically gives all mean square
values since it was hased upon a simple trapezoidal finite difference
integration. Some time saving might be made by using larger time

increments with a more accurate simulation method such as &mge-xutu(zz)

or the Metrix Exponential(23 , 24) . The initial results were sufficiently

poor for systems of tenth order and less to discourage any ad:l;tional
wcrk along these lines at this time.
In spite of the estimations involved in cobtaining these
approximate relations, a few conclusions can be drewn from Plgure T:
le Direct algebraic evaluation is superior for systems up
to the point where double accuracy cal ~ulations are
required.
2. In the neighborhood of tenth crder systems, either
integration or double accuracy algebraic evaluation
can be used. The decision should be based upon the
number of integration points to be used, the average
number of mean square values to be calculated, etc.
(It should be remembered that the integration method
is easier to program than the algebraic evaluation

method for systems of this order.)
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3. Direct integration should be used for systems

B

above fifteenth or twentieth order.

L Simulation should only be used when the pro-
gram simplicity is more important than the com-
putation time, or when the system nonlinearities
cannot be handied properly through equivalent

linearization.

! it <t e
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L.0 Optimization Techniques

The choice of the Multiple-Parameter, Max-Ranking Optimization

Criterion which was introduced in Chapter 2 places & restriction on the

type of optimization technique which cen be employed. Standard methods

of calculus cannot be used because the slopes at the various minims will

not, in genersl, be zern. The reasons for this are given in Section

2.1.4 and examples are shown in Pigure 8 and in 3ections 5.2 and 5.3.

Some types of steepest ascent(zs) optimization right be

employed. The geners! n-dimensionsl steepest ascent method uses some

form of the following logic:

1.

Determine the pﬁrtial derivatives with respect

to each of the n dimensions at the preaent position.
This 18 usually done by calculating the ‘mlue §f thé
function vheee inimum 1s being sought &% small
increments on either side of the present position.'
The average partial derivatives through the present
location can then be calculated for that particulars
dimension. This is repeated for all n dimensions.
Deteruine a new locatiorn by choosing increments
for each of the n dimensions proportioneal to their
own partial derivatives. (The directions chosen
for each dimension, of course, depends uron

vwhether & maxirum or & minimum is being sought.)
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This perticulir choice of increments forces
the new location to be in the direction of the
steepest path wvhich pesses through the old
location.

3. Steps 1 and 2 are repested until s local max-
ime (or minimum) is reached. In actuality,
the search is stopped when all the partial der-
ivatives arc below some predetermined level,
since otherwise the search could go on un}efin-
itely looking for exactly zero partial defintives.

L. Repeat steps 1 through 3 for several starting

points. This {s necessary, since eqch starting
point cen only result in the determination of a
single extremum. In most multidimensional

problems there will be several relative extrems.

The introduction of the Max-Ranking Performmnce Criterion
creates two additional problems for the steepest ascent method. &inee
the surface whose minimum is being sought is 8 composite formed by the
upper selection of a number of surfaces, there vill be interssctiouns
of the surfaces with corresponding disccntinuous derivatives. This
can cause problems in the determination of the local partisl derive-
tives and in the decision as to when a locsl extresa has been reached.
S8econdly, most extremms will occur at the interscction of two oF more

of these hypersurfaces. Thus it vill be certainly presible tc have

- 39 - o S PSS

A N k‘ kS 0“‘ & .' \l i , g 'ﬁ( ) 5
Soml W LA AR e

® .
N

VP



large valued derivatives in the immedisi= vicinity of on extremuz. Flgure
8 shows a typical performance cusve for & one-dimencional optimizaiiocs
which 1s employing the Max-Renking Criterion. A high value of the slope
at position (&) would dictave a large incrementing step (A K) to loca-
tion (b). This could very easily result in a search process which
oscillated back and forth without ever converging on the ectusl minimumx
unless special precautions were taken to guard sgainst this situation.
These difficulties add complexity to an optimization procedure whick,
for multiple dimensional seaerches, is alreedy quite complex and lengthy.

The steepest ascent method provides excellent results for a search
of well-behaved, unimodal functions. Brooks(es) bas shown that for
unimodal functions of two variasbles the steepest ascent method 1s superior
to & number of other methods. In particular, Brooks states that sequen-
tial methods (i.e., methods which base a course of action, at least in
part, upon the past results) glve generally better results than non-
sequentia) =ethods. However, if it is necessary to find the extrema
of functic.® :ii-% z2ie not unimodal, the problem is more complicated.
It is now necessary tc use & nmumber of starting points to be assured
that all local extrems in the range of interest are found.

If the required number of starting points for & one-dimemsional

problem is "M", the number of starting points for the equivalent n-
dimensional problem is M*. This can be reduced somewhat by various
additions to the computer program. For example, since a large number of

starting peinta may result in determining the same extrema, the
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calculation for a particular starting point can be discontinued
when 1t 1s ctbvicus tbat a8 previcucly delerudned extrema is sgeir
being approached. Gelfand(QT) has suggested a method which operates
a little differently from this, but which has about the same end
result. The presence of regions of instability witninu the search
space may greatly complicate the steepest ascent approach. It is
certainly possible that a significant fraction of the steepesti ascent
paths will lead into regions of instability. When this occurs, methods
must be formulated to circumvent these regions.

It can therefore be concluded that steepest escent methods
can be readily applied to unimodel, one, two or possibly three-
dimensional optimizations. The added complexity of the Max-Ranking
Optimization Criterion, the regions of instabllity and the higher
dimension searches which are treated here in Chapter 5 rule out the use

of this nethod for this type of application.

4.1 Random Search Techniques

The basic concept of a random seerch is not new. However,
improvements in digital computer speed within the past few years have
now enabled random search methods to be applied to more complex problems.

Other people have contributed to this field(ea)

, but probably the most
complete treatment is that given by Karnopp(ag’ 30). Karnopp suggests
a number of ways of employing random search. Only three general methods

are discussed here.
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The various types cf randem sczrol nathods can oot be
explained through the use of a simple example. CTonslder Lho unlioco
function, F(K), shown in Figure 9. It is raquired itha: wo 2u oin
minimum of 4bec #u lrn between the limits of K and X..

The first approach to the problem might be o Try & pari..

random sesrch. This involves making completely random cholces of T
between K = Ka end K = Kd. The sesrch probeabllity depsity funciion
which describes the selection process is,
p(K) = o= for Ky > K > K_
8 K, - K d - T

d a

and
p (K) = 0, elsevhere.
It is easy to show that the probability of choosing & number within

la Kc units of the actusl minimum &t Kc is:

- - mz__&. i1}
P(KC+AKC 2Kk 2K, Alg:c)' Ké-Ka * M

As might be expected, this is one of the least efficient random sesrch
procedures.

A second eypproach, end one suggested by Karnopp, is %o use
a8 purely random search for only the first phase of the seerch. At the

end of this phase, “he value cof K which has . 'ven the sowest value of

]

F(X) 1s reccrded. This best previcus value of ¥ ig denscied as ‘Z,ﬁ

ket
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The parameter xb takes on the new v:lue of K eich time & choice is
made vhich produces a value of P(K) lowver than the previous value,
r(xb). The sesrch probebility density function for the sacond phase

is taken ss,

Py(K) = ml; for K, +8K > K> K- 4K (26)

and

ps(x) = 0, elsevhere.
This providees a uniform probuﬁility, local random search which is cen-
tered around the best previous value of K(K = Kb). If 4K, 1s large,
this phase vill behave much like the purely rendom search of the first

phase. If AKb is small, in particular, 1if

AK < |x -K| . (7)
the probability that the next choice is an improvement over the dest
previous value is 0.5. 8ince we have no prior knovledge as to the
locatior of xc, it is impossidble to determine u:b beforehand. The
above relationship indicates that the smaller the value of AK,, the
higher the probability that the next choice will be an improvement. ‘m
the other hand, the expected change in K, E(|AK|), will decrease with

decreasing A&,

-3
(|ax|) - —;9- (18)

-ks-




Thus we see that small values of AK, mey give a higher provabiiity
o

o

e smaller.

of improvement, but the improvements obtained will

karnopp! 3°)

suggests a way to vary ¢;K$ in order to luprove this
phase of the search procedure.

One of the underlying objectives of this work was to arrive
‘at a method of solution which\would be sufficiently general, yet be as
simple as possible to implement. Therefore, an attempt was made to
find a random search procedure which was more efficient than t@e purely
random search and less complicated than the previously mentioned method.

The one which has shown the most promise is the exponential random

search, a method which bears some resemblance to the "creeping"” random

(28)

This method employs & search probability density which is

search suggested by Brooks

largest at K = Kb and tapers off exponentially on both sides of K = Kb.

This is expressed as,

l-m
K . m
p (K) » —2 -—-—;—'i (19)

X -
m(K.d - Kﬁ) L a

Tals search rnueia Ty T, TRy L0 _obbed dn Pievwe 10 L fimetion
of X - Kb for several vzalues uof m. The integer = must be odd in
order to produce a search orobabllity density symmetric about X = Kb.
This seemingly complicated search probability density was
chosen because it can be generated very easily. Most computation fac-

ilities have a simple subroutine which gcnerstes random numbers. The

Best Available Copy



Figure 10

Search Probability Density
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M. I. T. Computation Center subreutine i7 laielad RANBGFIR). wherso

B, for our purposes, is & dummy variable. This subroutine genera‘es
random numbers between zero and one with uniform probatility density.
With the aid of this subroutine, & new value of K can be generated

with only the following single Fortrar statement:

AK = AKB + (AKD = AKA) * ((2.%RANNGF(B)-1.) %),

where
AY. -~ K,
AKA = Kﬁ’
AKB = Kb,
AKD = Ka, and

M = the exponent (m).

The probability density is somewhat eltered by -the fact thatb values
of K greater than Kﬁ or less than K; are disallowed. A random search
with & search probability density of this form bas several advantages.
First, a certain percentage of large.steps will be taken. This is
adventageous during the initial phaée‘pf 2 search. Itviswalso‘;mgortant
xcrifunctions which are not uﬁimoaal; since 1t is certainly necessary to
be able tc¢ mnve from thé area of a relative minimum to the vicinity of
the true minimum. In fact, it is suggested that the search jrocédure
be set up so that any point in the search space can be reached ;n cne
stcp from any other point in the search space.
- 48 -
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A second advantage 1o that B res s Ly LATE per o
time {s spent searching the area ‘mmediatoly edjs-ont ©. the beot
previous point. This is particularly useful in the final stages - the
search.

Although the random search method which uses the changing
probability dersity function shares mcst of these advantages, the
exponential random search requires fewer decisions to be made during
the operation of the digital computer progrem and is tnerefore simpler
to program. For this reason, the exponential random search was selected

for this study.

L.2 General Properties of the Exponential Random Search

One of the difficulties with studying or comparing search
techniques is the necessity of choosing some particular function on
which the search can be carried out. This can lead to many mis-
conceptions, since search techniques which work efficicntly with one
type of function may behave poorly with others. For this »reason, the
reader should keep in mind the fact the results obtained are for
specific types of functions. Although an effort has been made to
make “he function as generalas possible, there 1is, of course, no
guarantee of general applicability.

Consider the function of Figure 11, which has the
following properties:

1. It is symmetrical about K = O.

2. Only the portion between K = Ka and K = + Ka

will be considered. &gop\j’
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3. The funci'-n between K - 7 and K = + Ka is
menctenically increasing.
4. The function need not be continuous in slope.
The best value obtained g2t this point in the search is K = Kb. Each

new value of K chosen 1ls calculated from,

o o [
K = cKa(GK) + K 120)
where m 18 an odd integer and GK is a random variable having the

probability density,

p(G. ) = 1/2 rer |G | <1 (21)
and

p(GK) = 0 elsevhere.

Bince
p(K) 4K = p(G) d Gy, (22)
the search probability dcnsity of K can be readily determined to be

¢ Lm
AU Yoy (23)
Pskh/ - m Ka ‘_EK;_— ’

which is a special form of equation (19)
The probability o reaching & lower value of F(K) on the
next attempt 1s call the probability of iprcvement, pI(Kb). This 1is ,

equal to:

, S e o 2% 'ﬁm [v'r‘ e
Zest Availalle
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k) = % W)

Equation (23) dL;s not Include the effects of disallowihg all values
of K less thar.ol(a ancd grester than + K&. The dencminator of equa-
tion (24), therefore, represents the fraction of sll pocisible choices
which fall within the accepted region. The inclusion of the denomin-
ator represents the fact that disallowed choices are ignored.
Equation (24) can be evaluated using equation (23), with

the result,

which is plotted in Figure 12 for several values of m., For comparison
purposes, the value of m = 1 was also included. Tkis represents-the
v e ¥ réodaua serch.  Lae ouner extreme is rerresented by m = ©
which produces a value of pI(K.b) equal to 0.5 for all values of xb/x.
except zero and 1. It is interesting to note the probability of

improvement for various values cf m when [b‘/x.z .Ol.
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This indicates why high values of m are better {n the final ztagee
of a search.
A second characteristic which is important is the sxpected

step length, E(] 4X|). The dinensionless expected step length is

equal to:
+K
a |K - )(bl
[ —rnm
' a
r(lakl) . - (26)
xa +K
a
f p, (K} &K
-K
a
This can be integreted in a fashion similer to tae previous
example.e

-5k -




, m+] /e m+]
1 - xb;x —_— Loe Kb‘ﬁ' e
a m
(———=) ® « )
P 2
E(_‘___bhi\ - < - (37)

£}

This selationshiy is pl-tted in Flgure 19,

There {s one othor pleae of inf:rmatioﬁ which can be obtafind
from this general unimedal functicon., This (s the probabllity density
of the locati:n of Wk current test vaiu. (Kb) after Nc chnices have
been made,  Sine the prebability density of the position of the noxt
print to Lo chos:n in only 8 function of the current location of Kb,.

i (31)
! this pr.cess is called 8 Markov process(“ ‘. A random process

—p

described by K(t) 15 & Markov process if and only Lf, for every finite

set t, <€t < ..., <t <t ,
1 P S n
y t'.oo--' =
p(xn tn'xl’ 1’ ’xn-l’ tn-l) p(xk, tn'xn-l’ tn-l) (28)

A very convenient property of 8 Markov process is this fact, that the
probability density at any state is only dep.ndent upon the probablility
density at the previous state and the tranzition probability density.
Ther:fore, given the initial starting point and the prcbability density
h which describes the lucrementing or stepping rrocess (Figure 10), it
| 1s theoretically possible to determine the probability density of Kb

for each step in the search process. In practice, it is not possible
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to do this directly tecause the integrals involved very rapidly grow

too complex.

(44

Therafore, f¢ {c firsd Zocoogary to

continuous probability density function into discrete functicns.

TGhnslulw vue several

The

probability of the 1*8 discrete value of K after N chotces (p(lb,

HQ}), given p(Kb, R, - 1) is obtained as follows:

1.

Multiply the probebilities at step Nc -1

by their ccocrresponding probability of improvement,

Px(’%)s" discrete-var.able versicn of Flgure 11. This

gives the partion for which there will te an
imprivement, |

‘This portion 18 then distributcd over the
allowable regiors according to the exponertial
seerch probability distiibution. (By “"allowable™
we mean that portion of the tunction F(K) which
i{s less than F(Kb)).

Repeat step 2 for all values of Kb(i) N -1

end at each point Kb(i) y ©Sum the contributions

c
from all such points.

Multiply the probabilities at step Hc-l by

(1 - pI(Kb)). This gives the portion for which
there will be no improvement.

Add this static portion to the changing portion

obtained in step 3.
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This process was programmed for a digital computer and results were
Soteined for two values of the exponeni m (m = 3 end o = 9). The
results are shown in Plgures 14, 15 ancé 16.

The results demonstrate the gencral chare:teristics which
can be predicted qualitatively on the bmeis of Fgures 12 and 13,
that 13, lov values of m produce more rapid initiel convergence, but
slowver final convergerce than higher values.

It should be rememhered here thet these resuits are for
unimodal functions. The problems of multimpdal functions are more

complicated by an order of magnitude. It ‘s imposaible to find a

value of the expornent m which 1s optimum for all multimodal systems and

it is ridiculous to obtain the optimum value of m for one particular
function. Some general recommendations can De made, howerer., Thase

are presented in Section 4.4

An exponential reandom search for a minimum night be called an

"Inebriated Random Walk". 1n this case, the cften-discussed alcoholic
still cannot control his direction or step length, but he at least

realizes that he is in no shape to wvalk uphill.

4,3 Multidimensicnal Random Search

One of the basic atiributes of random search metods is the
fact that the progro.ming of a generel n-dimensional search is no
more complex than the programming of the two-iimmnsional search, The
following five Jortran statemants are sufficient to select the new

trial point for the general n-dimensional case:

-8 -
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rigure 16
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1. D5 I =1, K

2. AK(I) = AKB(I)+(AKD(I)-AKA(I))*((2.#RANNGF(B)-1. )**M)
3. Ir(AK(I)-AKA(I)) 2, 4, b '

L. II'(AKD(i)-—AK(I)) 2, 5,5

5. CYNTINUE

The subscript (I) refers to the It'h dimension (I = 1tcn). The
remaining terms are as previously defined. "

Although the simplicity is maintained for tne higher dimen- .
sional search, thr search efficlency cen be expected tc deteriorate. |
Figure 17 shows one quadrant of the two-dimensional search probability
density. It is obvious from this figure that this type cf seﬁrch
profile provides a more efficient s.:arch along the principel axes
than ir the diagonal directlions. During the course of this work,
bolh spherical and eilipsoidal profiles were tried in an attempt to
produce & more rotationally-balanced search probability demsity. Thees
methods worked satisfactorily for two dimensions, but the increese in
complexity for higher dimensions was not worth the somewhat doubtful
_}gpin in seerch efficiency.

The worst multidimensional search for the exponentisl prre- !
bability density 1s one which would continue to move along a disgonal.

The best case 1s one which would continue to move along the principal
axes. Thus, these two extremes must certainly brecket all possible

cases.
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Figure 17

Iwo Dimsneional
Sesrch Probedility Demeity

RN
BUANEN
Kea';::: \\ \\m\. (162 Xy aoq h#‘-

k\ .-\i\ ~
N\ T

- — .

o 0.2 0.4 0.6 0.8 1.0




The probability ot improvement for th: diagonal scarch is
plotted in Pigures 18 and 19 for several values of n and two values
of m. The 5m=-dimemiom1 search (n : 1) is also plotted since {t
represents the maximum scarch efficiency in each case. From this it
is cbvious that the nurber of trials must necessarily increease with
the d'mensionality c¢f the pooblem. An empirical formule has been
found to be helpful for determining how many test points are necessary

to give a reascnable contidence in the scarch result:

™), ~ (), ()" Y
This states thet the number of choic:s for an n-iimensional segerch ig
roughly equal to the number required for & compsreble one-dimensionsi
scarch times 2 to the (n - 1) power. The number of choices (Nc) refers
to the number of choices which do not fall into a region of instability.
This empirical r=laticnship is based on a large number of one through
five-dimensional studies. The few runs which were nede at higher |
velues of n (up to and including 9) tend tc show that this is too pessi-

mistic. This is certainly one area in which more work 18 needed.

4,4 Genera) Recommendations for Applying Random Scarch Techniques
Very little information is available on the application of

random search methods to practical engineering problems. It is the

purpose of this section to 1list some of the practices which evolved

during this study. In addition to the three applications described in
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Plgure 19
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Chapter 5, & number of multidimensional, unimodal functions were
stuvdied. This was done in an attempt to become more familier with
the behavior of random search techniques for known functions, so that
an easier transition could be made to the more complex engineering
problems. This turned out to be time well-spent. Many of tue follow-
ing recommendations are based unon informetion learned during this
phase of the study.
1. For low dimensional searches (n = 1 through 3), an
exponent (m) of 3 or 5 will provide sufficiently
rapid convergence for most practical problems. If
accuracies better than + 1% are required,.the tinal
portion of the search canbe conducted using an exponent
of Tor 9.
2. Convergence to within - 1% of the actual extremum
can be expected within 100 choices ((Nc)l = 100)
for a one-dimensional search of a system which is not
interrupted by unstable regions';or an exponent (n)
equal to 3.
3. More choices are required for systems which have
& higher percentage of the search space taken up by
unstable regions. Evidentally, the disturbance of
the normally smooth search “flow” 18 of more importance
than the benefit obteined from the reduction of the

search space.
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k. There are at least two equally acceptatle methols
for terminating the scarch;

8. 3top after a given number of choices
(Nc). (This does not include any
choices which fall in unstable regions. )

. b. Btop after a given number of stable
choices fai] to produce an improvemenrt
of & certain percent (for example, .01%).

5. For complex, multimodal, mult.dimensional Problems,
1t 18 best to run at least two chort, less exact
(m = 3} searches starting from different positions.
Tf these tend to converge in one location » there {g
a high probability that the true extrema {s being
approached. A ﬁi@er exponent searca (m = 7 or 9)
can then be {nitiated at the end position cf one of
the preﬁoua searchea. If twvo or more locations
result from the initial sea.ches, ecach of thes: . \Y
have to be .aecrched more exactly to determine the
true minimum. This is usually & more satigfactory
procedure than running one, long, examct search.

6. The search efficiency can usually be improved by
running & purely random r.earch (m=1) for the rirst
10 or 208 of the total search, an expcnential search
vith® = 3 for the next bo tp 60% of the search, and
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an expouential seerch with m = T or 9 for the
rerminder of the search.

For complex systems conteining several regions

of instability, it may be desirable to determine the
shape of the function in the vicinity of the
extremum. This w.ill indicate hov sensitive the
function 18 to small changes in each of tue cone
trol variables as well a8 pointing out possibdle
regions of instability which may be immediately

ad 'ucent to the estremuz. E
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5.0 Applications

In this chapter, we will attempt to show how the theories
of the previous three chapters can be put to use to solve practical
eugineering problems. Three problems were chusen &s examples.

The first (section 5.1) deals with the positioning comtrol
of a typical second order system (mBss-spring-dachpot). The random
disturbence has a damped-exponential autceorrelation function amd s
produced by a first-order, low-pmss filter which is subjected to
zero-mean, Gaussian white noise. Acceleration, velocity, and displace-
m t feedback control are empicyed and the maximur control force is
liiited to : Fxmx'

The second and third problems both deal with 2 submarine which
i5 running at periscope deyth i @ 1andon sca. In the second example,
the optimal roll contrcl of the submarine is determined. The power
spectral density of the roll forcing function is calculated from tﬁe
Neumann wave height spectmm(ze’ 33, 34) and from subrarine geometry.

A control with five variable parameters is designed.

In the third problem, the coupled pitch-heave power spectre
are determined in a fashicn similar to trat of the preceeding problem,
The nine, variable parsmeters of the control system are specified so
a8 to optimize a given aystem perf‘ornaice criterion.

The first example was chosen to compare the Max-Ranking,
statistically-equivalent linearization apgyroach to ancther method which

did not use & criterion that ninimizes some function of the error. The
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purpose of this comparison was %o show that the Max-Rmnking Criterion
can accomplish the end goals of other criteria which necessitate more
complex mathemptical analyses. The nécﬁnd two examples were chosen for
two reasons. Pirst, to demonstrete how the use of the techniques
developed in this vork eimplify the nptixization of complex systems; and
secondly, t: demonstrate that these techniques can produce practical

results for real problems.

5.1 Three-Parameter Fositicning Control

The system of Figure 20 {5 & positioning contrcl which has
accelersticn, velocity, and displacement feedback. The input distur-
bance is formed by psesing -ero-mean, Gaussian, white ncise through a
first order lag, or low pmss filter.

Thii vas the system us-d by Broniui:z(ﬁ) to compare the
satureting control system of lleuton( ¢) to *Le "bang-bang" control
systems developed by Bass'>®) and Davia(37). (Bass and Davts botn
used Lyspunov's Second ltle‘l:.hod(13 » 3) to ontain the switching functions
vhich produce s minimum mean square error.) Newton develoyed a method
for minimizing the mean square erro: of & 3ystem suhject “0 constmints
on the mean square values of one or more of the system variables (see
section 2.1.3). A solution wvas obtained by using Lagrange Multiplier
and Calculus of Variations teckniques. Bronivitz applied Rewton's
method to @& second order system and obtained the controi shown in

Mgure 20 with the control parametcrs li, (2' and lé Yor & aaaxping
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ratio (§) equal to 0.2, w = w, = 10CC rad/s~c., and the Lagrange
Multiplier which produced the best results (f> = 0.1}, the contiol

parameters for Newton's control were:

Kl' = 1-71;
Ky = 5.53,
= 8.00.

Ku
3
Breniwitz then ran this system on an analog computer.
Unfortunately, he only determined the two ratios: (aXD/c ) and
(me/axl) at three values of (Fm/an). The terms in these ratics
are deflned as:
- the r.m.s. value of XD7
- the r.m.s. velue of xD when F is zero,
max
F - the maximum allowable value cf the control
2
force (XF/pn),
- the r.m.s. value of Xl,

¢ - the r.m.s. .value of (N/uﬁ).

Thus it was necessary to determine values for e, , ¢, , and @
xA xDo xF

before comparing the two criteria.

¥
. e fls g : okl [‘,”‘ |
cnt Avelleblc
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it was decided to mmke the calculsations on the digital com-
puter using the equivalent lincarization technique. This also lllovs‘
ug to comperxc some of the results from the equivalent linearization with
the analog resulta of Broniwitz. Digital computer calculations were
made fo1 several values of KEQ The results are shown in Figures 21
and 22.

The agreement here 18 quite good when one considers that one
of the thr ‘e feedback loops p&ssing through the nonlinearity 1.3» an
algedbraic ;F;op with a loop gain of - 1.T1 Xm This ceuses the signal
at tf.e input'.to the nonlinearity to be appreciably diatprted for all
values of Fm/cx less than 2 or 3,. which i3 contradictory to the
besic assunption Jt:.hat Xl is Gaussian. The difference between Booton's
method and th: flrst method of Xazakov isamll, althoug’br ~_Bocﬂ:on'i
method 18 bVetter in this caee,

Three syetem variables are used in the optimization
criterion. These ére the mean square acceleration (chE), the mean
square displacement (c)&)‘?) and the mean square control force (oxre).
Results were obtained for three different Max-Ranking Arrays. They
are shown in Table 3.

Arguy number 1 was chosen to illustrate equal emphasis
between the tiz.ree system variables. Arrsys 2 and 3 should accomplish
the basic objective of Newton's method, that is to minimize the mean
square displacement while fixing an upper limit on the mean square

value of the contro. force. The two limits were taken from the results




l.0

002

0.1

Figure 21

Lomperison of Digital Results
vith the Analog Simulation

__.—hudmlml
nuodonl\'w

& DPBroniwitz Data

M-——-—‘

1 Availal

Bef o



Best Available Copy

\_, xed
o
c /4
1 3
D]
1
r“h
e Y
d
3
® ] 231Ajunag
gﬂ.x uc pseg
Q .

uoyaeTmTg Jo1way 243 G3iA

eaMsay 193 P3Q JO uosredwo)
22 aanityd




Army Oy 2 OXD o. ¢
Number A T
0 0] 0

1 50 50 50

0 o]

2 0 3.86
10 1486

50 50

0 0

3 0 3.17
10 3.17

50 50

Table 3

Max-Ranking Arrays for

Example




obtﬁined using ﬁhe control parameters determined by Broniwit:z.

A computer mrogrmm wes written to optimize this system for
each of the thr:e Max-Ranking Arrays. A linearized approuch was
taken, with the direct evaluation of the third order ~quaticns as

2
presented in Newton, Gould exnd Kaiser( O)'

A three.dimensicnal rendonm
secarch was used to determine the three control parameters. This
digital computer program 18 included in Appendix A-2 to show the sim-
plicity and brevity of this approach. A cufficient number of coarent
cards (distinguished by the C in the first colum) are included to
expiain the logic and mnemonic ccding.

Tue results of these optimizations are show: in Table 4.
Array 1, which specifled that ail three verlables were of equsl lompor-

2 2 2
tance, produced a final result with ¢ = @ =@ = 1.35. Array
2o X%
2 and 3 essentially duplicated the results obtalned using Newton's

Method, thus accompl shing the mwmjcr purpose of this example. Tuais
shows that the s!mple approach offered by “he Max-Ranking Critericn
can accomplish the same end goa's as other, more complicatc&wmethods.
At the same time, it never forces the designer to chocse values for
wveighting functions or Lagrange Mnltipliersbwhich have little or no

physical relationship to the actual problem.

5.2 Control of Ship Motions
Before going on to the two specific problems to be discussed
in this section, it i8s necessary to first provide some of the background

informmtion in this field. A large number of papers have been written

)
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2 ! ' ' ' * 2 2 2 2
Centrol F,fan Kl KEQ K2 K'EQ K3 KEQ KEQ axA ch a% cxv
Max -Ranking
Arrey 1 .0 .73 .98 T3 1999 JL.35)1.3901.35) .75
Newton's 5 2.77 L.oe 36 L1981 3.17 L L1517

1T 50O
Mex-~-Ranking
Array 2 LG ¥ | 3.T75 TN INOT'S K VD ran I Vel
Newton's 1.TL 6,63 8.0 203 1 .ckel3.86 | .cud8

S.O ’999
Max-Ranking : _
Array 3 < <.73 7.78 27T | .ok63.86 | .ouT
* s
}(m wae determined by Booton's Methoo

Tab.  +
Comparison of Max-Ranking Methcod with Newton's Method
IO A




on the response and control of & ship or submarine in the sea. Some
of the more important works are listed in references 39 to bk,

Until the last decade, almost all of the work wae done basad
on a "regular " sea, that 18 one which ie perfectly sinuscidal.
Recently, people becamec intrrestad in detorminizg the statistical pro-
perties of a random sca. Many wave height measurements were recorded,
but no general correlation wes btained until Neurmnn arrived at a

(32 - 34)

formula which describes the power spectra of & fully-arisen ses

as 8 function of the wind ve ocity (Vv) and the shiip's heading (Qu).

~ C -(232/5?'7‘2) ~
s (w, 'v) s -8 e cos” ', ‘ (30)
w .

The paramcter, w, 18 the wave frequency and CO iz & constant equal
to 32.9 rt.a/sec.s. This rexresented 8 gigantic step forward. However,
the problem of determining 'the tranefer function beiween the sea spectrum
and the force and moment input to the ship still remsins to be solvea.
Thus far, this cau only be done for mathematical.y simple shapes such
as ellipsoids and aspheroids.

anelock(hS) has developed the equations toc determine the
heaving force and pitching moment of a prolate spheroid submerged in
a regular sea. Assuming that the shape of a submsrine can be approx-
imated by a prolate spheroid, It !s pow possible to determine the pover
spectral density of the pitching and heaving forcing function. The

process is shown in block diagram form in Pigure 23.
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The vperation ( Aw) ropresents the appmrent frequency shift in the
sva spectrurm due to the fact that the submarine {8 moving with respect
to the sea. The function d(w ) representc the attenuation due %o deptl

(w )

for waves ~f various “requencies. The towm C, C(wz) = C, CYY
are the transfer functicns developed by nvelock,

The frequency shirt (A i) can or determined quite resdily.
Twue speed of propegation of & wave (¢) 1s only a function of its

wavelength (A)(%),

2.8, (31)

2n

The frequency of this wave as observed by a stationsry object is:

2nc

A

b =

‘ ()

The frequency of this wave as cbserved by an object vhich is moving
at a velocity Vo 24 the direction directly opposite to the wave proe-
pogation direction (.v = 0) 1s¢
2 : .
Y (Vo +tc)oe (33)
Combining equations (31), (32), and (33) glves a direct relationship

between the sea spectrun frequency (w) and the frequency observed by

the submarine (ws),

Vow
WB - W(l + —-E- ). (31&)
- 82 -
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This relstionship allows the power spectral density of the sea to be

«xpressed as 3 function of the frequency g Remembering thet,

5% () dw = 82(%) dm, (35)

the new power apectral d-nsity is,

8 (w

o]
o~
S (WS) - [ @&

(36)
1+

The depth attenuation of the «ffects of the varicus frequency

waves 18 expressed as,

-
) =2 & © (371)
where d 1s the depth.
Havelock determined the functions Cz(ws) and Cw(ws)
to be, ‘
*?? 2nL %
o)« DBt 1 et B -k |
(38)
3/2
. mel, 1
(&) I3/2 =) ’
J
5 ef%
IR ACAtL
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rfaraea) g, (L’{:)] ;

9, /2( )s I3/p( ) and Jg /o &re standard Bessel functions

L 18 the length of the spheroid = 2

xl, 12 and X' are the axisl, transverse and rotatioual
virtual finertis coefficients

& 18 one-half the length
b 15 one-half the mximum width
B 1is the length to Lwam retio = o/

(39




v}
e 18 the eccentricity = (1 - )%
a

The sdditional two constants C. and 02 are defined as,

1l
-,t ”g lb (ko)
3 nef
L 2
Ca--j-ngfab L, (41)

vheref 43 the water density.

These reletionships were combined numerically to produce the
pover spectral densities Hi(ws) and sz(ms) shown 1z Figures 24 and
25,

The above relationships developed by Havelock cannot be used
for roll calculations. Therefore, for the sake of expediency in deter-
mining the roll spectrum, it is assumed that the body is square in
croés section. JFor this case, it is also assumed that the sea is coming‘
from directly abeam {the worst case) and that v 1is zero. This pfo;
duces the approximate power density spectrum shown in Figure 26.

In order to be of any value in a linear analysis, these
approximate spectra must be now approximated by some type of linear

filter. A second order filter of the type,
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was triesd. Two filters are compared with the heuve.pouer density spectrum
in Figure 24. The filter which sets “31 equal to zerc appears to

provide the test modei. The filter with n3l 2 nCl wvas akown also

becaus~ it has a srecisl charscteristis that come peopls feel 13
{zportant. This is the fact that the autocorrelstion furction ~f this

filter output ls:

il n)
- 'h‘
RF(T) - cF e 2 cos (”012 - -ﬁf—) T (43)

when the lnput to the filter 1s white nols... It bhas been generslly
suggrsted that the autccorrelaticn function of the ship disturbances
could be best approximated by an exponentlally-damped cosine fuaiction.
It would be cf interest to compar~ the outpul autocorrelation Junctions
regulting from these two different fllters,

For this study, the first filter (n3] = 0) vas used €8 an
approximation for all three forcing functions. (This filter produces
a disturbahce autocorrelation function which is the exponentially-

damped sum cf sine and cosine terms.)

v Available
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The reduction of ship motions is certainly nov 8 new
subjeot(uY). However, it has only been within the pmst few ycars that
peopie have become concerned with the optimel control of ship motions.
As in meny other flelds of contrnl, th- emphasis has been placed on
minimizing the mean square displacement. For instance, Dnvis(37) has
shown that the minimum mean square error criterion leads to the "bang--
bang"' control of all control surtaces. He then went on to determine tne
switching criterla for this type of control. Omne only need envisign a
modern airciatt carrier sailing out to s~a with its rudder flailing
back and forth between its stops to wonder {f it is réaiiy desirable Lo
minimize the mean square error, In the next two sections we shall
attem.* *~ show thet practical optimel control can be designed using

the Max-Ranking Criterion.

5.2.1 Submarine Roll Control
The rolling action of & submarine can be modeled quite
effectively as & simple second order system. This is because roll is
so lightly coupled to the othexr five degrees#of-rreedom. The system
‘w;ith roll control is shown in Figure 27._

The nomenclatur: which is used here agrees with that

48)

iccepted by The Soclety of KRaval Architects and Marine Engineers(
Ix - moment of inertia about the roll axis
K. - virtual moment of inertis about the roll axlis

- 1roll acceleration

e

X_ - roll velocity

o4




Figurs 27

Foll Comtrol of & Submarine
M

B Zy
%
Roll + .
Disturbance R s L ) SA \ %
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|
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Figure 28

Roll Disturbamce Model
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X - roll angle

B - buoysncy

Z - metacentric helight (must be regative for stability)
I A damping (must b negative for stability)

Values which are typical for moderr submarines are used,

3 x 107 lbn-ft

I =
x
K, e - 3 x 10 lomert?

¢ 2
BZB a ~.5 x 109 lbm ft /SeCQ

¢ 2,
= -1071bm £t°/sec

~
"

From Flaur. 26, th.: input disturbance {8 modeled by a unity
arplitude wnite nolse source and & second order filter as shcwn in
Plgure 28.

The values determined for the coefficients are:

S, * 6.0k x 107 lbm rtz/aec3

T
b

The control system chosen {s about &8 general as 18 desirable,

.T3 rad/sec

]

438 rad/sec

Provision is made for acceleration, velocity, displacement, and 1ntegfal
displacement feedback. The lag in the control path models the movement
of the control surfaces in response to command signals. The variable,

ch, is the time rate of change >f the control moment, xcm’ and therefore

- -

Lf‘f‘w‘m"f
%\f Fi"”:[ ’

l‘ ,.

- (? K]
(‘ﬁgy




is & measure of instantaneocus control pover. The saturetion nonlinearity
serves to 1imit the control moment (xcm) to & maxtmum value of x3 and
ale> r«stricts the coutrol power (ch) to & mxi~um value of 2K3Kc.

When the nonlinearity is replaced by the equivialent linear gain an,

the five contr>]l parazeters are then deflned as
’1%3
2 ° 3
= L5
55
- 55

c Kb

>='¢

Sal

=
]

Jour system variables are used in the optimization criterion.
These are the rcll acceleretion (X.), the roll angle errcr (-Xv),
b4
the control monent (Xcm) and the control pover (xcp). The Max-

Ranking Array which was used is shown in Table 5.
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2
2 2 2
Al % °x %
xf’ P cp cm
- ”
(rea/ sec’ )2 (red)® (lm-'ta/uc3 ) (lba-!‘ta /'seca )2‘
o 0 0 0 0
1 | 6.8 x10° | 3.00 x 107 10t 1.6 x 10%°
2 | 2.59 x 10°% | i.22 x 1073 9 x 10t% f.b x 1077
| -3 -3 15 2.56 x 10%°
3 1.0h x 10 4.87 x 10™ k.9 x 10 .
v | 68 x103 | 1u9x10® | 2.5 x 1080 1.03 x 1017
s | 2.59x 102 | 3.0 x 202 | 4.10x 16*7 b.10 x 1087
6 10 10 103° 105°
Table §
Max-Ranking Arrey
for Submarine Roll Control
These values are more meaningful in s different form. For
example: Oy 2 equal to 2.59 x lo'h rad‘?/:cek corresponds to an r.m.s.

value of xi wvhich would produce a .0Olg accelerstion at & 20 foot radius

e e el e oo e e e




o J
(the maximum radius of the submarine hull); @ “ equal to 1.22 x

2 N 2
3 rad  corresponds to an r.m.s. roll angle of 2 legre=s; Oy

1c”
cm

c. &
15 lbm-ftc/sec is th: moment required to

equa. to 6.4 x 1C
correct a 2 degree list of the submarine or to prodiuce a (25 rad/aec2
angular acceleration of the body; Oy 2 cqusl to 9 x lolu correspondes
roughly to the ability to move tlhe ogitro; surface from the zerv
position to the position which produces the mean square moment

(ox e . 6.4 x 1015) ir. three seconds.

o The 1a5% row in Table § wal purpoccly madc unrealistically
high. This allows some measure of comparison during tae carly rhase
of the search when the mean square vaiqpe are apt tc be high. if
this row were not present, the selection process would ¢iscard all
systems which produced any values greater thar those contained in
row J(1) = 55 This, in effect, discards informmtion which 1z of velue
to the search procedure and thus decreaees‘the efficlency of the search.
This added row cennot confuse the end results, since, for this case,
any valus of J greater than 5 is readlly recognized as an unacceptable
systen.

The digital computer program for the problem was written using
equivalent linearization and algebraic evaluation. This program is
1néluded in Appendix A.2. It should Pg noted that required computation
for this sixth order system is conside;ably longer than for the previously

discussed third order system, however, the search procedure and the use

of the Max-Ranking Criterion are essent.ally unchanged.
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This program was run severul times with varying values of
he cearch exponent (m). After the first two short runs, it wes
bvious that the integral control temm (KE) should be zero. The remsin-

ng runs were .mde with only & four parumeter search. The results of

hese runs are listed in Tuble 6.

The presence of xx &8 8 search variable lengthened and
omplicated the procedure, The reason for this is the fact that there
8 only a narrow range of values of KE which yield a stable system.
lgure % shows this for the region near the minimum and also points
1t the fact that KE vhouid te equel to zerv for best results.

In runs ﬁumber one and two, only <5 to 30 percent of the

ytal choices were stable. Setting xx equal to Zero increased the

action of stabie points to around 50%. This still a low percentage,

d 1t suggests that either a high percentage of the search space is
‘étable, or a large portion of the search is being carried out in the
cinity of an unstable region. Figure 31 ehows that the value of KD

ich produces a minimum is, in fact, directly adjacent to an unstable
glon.

All 8ix runs were within less than 2$>of the lovest value

Jmin’ although some rather widely scattered values of the control

rameters were obtained. Runs three, four, and five produce close

‘eement and are all obviously neer the same minimum. Runs one, two

| 8ix may be approdching this same minimum, but the searches would

‘e to be continued to be sure.

iy

TR e b

e
)
e g ﬁ{ " b {‘ts‘n. ‘l K B
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Submarine Roll Control Optimization Results
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g pemalon
Vo Beedatelr

}

Run Wumber 1 2 3 L 5 I3
i 01 e 685 676 .669 666 666 .670
J(1) 655 L6TH . 664 566 .666 670
J(2) .233 245 226 229 227 .237
J(3) 66T 675 .669 666 686 670
J(h) .O49 .050 . 060 060 060 .055
oy 2 10° Lok L. 38 5.3 b.32 b3 43S

A
'°xv2 x10°  fe.s8 [ w63 | w38 e | b3 | 450
o 2 x 10° 7.23 7.43 6.66 6.95 6.89 1.21

X5

o ¢ x 1643 7.89 8.01 9.58 9.62 Q.60 8.7

cr 4
o - 10743 6.7T £.75 €.69 €.66 - 6.66 6.70

- .
“'xl2 x 10° 4.93 4,24 430 421 AT 483
X, 5.20 8.05 1.99 1.9 1.97 3.39
K, 1.03 -.009 .310 248 279 .125
lb -.557 -.919 -.976 -.951 -.995 -.911
X L0887 .009 @ Pixed af zero ———————=ea»
X, 085 .055 .165 .170 .164 A
7094 Computa-
tion time (min)M.5 ~ 1.5 o 1.4 ~l.6 ~l.3 ~1.2
Exponent 3 S 3 5 T 1

Table 6




The region around the point determined by run five was
examined and the results plotted in Figures 29 through 33, This form
of computer printout turns ocut to be more ureful than it was first
thought. It proves to be an effective chack on & number of iftems.

First, it pro-ides absolute proof that a minimum has been
roached. It, of course, does not prove that this is tb.e true ninisue

and not Just a relative mininmum,

It can point out regions of instability near the design point.

This is particulerly helpful information, since any control in which
small changes in a control parameter could cause instability, is not
prectical, let alone optimal.

Similarly, these figures 1nd1cn.te the sensi’.vity of the
system to changes in the ipdividual paremeters. This, certainly, is
also of interest to the desigrer. |

Finally, it provides a check o;: the accurecy of the compu.
tational process. Inaccuracies caused by round-off errors will add a
certain amount of scetter to the results,

Figures 29 through 33 showv that the searching process was
extremely accura*e. The only control parameter which is not within
L% of the actual minimm 1is X (Flgure 30). This 1s certainly excus-
\ble, since a > 10§ variation in K, Froduces only & .2§ ctange in the
ainimum. It should be pointed out that the search results obtained
lere are several times more accurste than are required in prective. 'nie
jearches vwere lengthened for these studies, since searching procedure

a8 also of interest. - ‘
ek P e
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Figure 31 shows that the rinimum is immediately adjacent to
a regicn of iastability. However, it alsuv shows that the control
puraneter K can be reduced by 10% while only reducing the system per-
formance by 2.5%. If this is not desirable, an alternative is to fix
xD at some level (such as 0.90) and run 8 new three paremeter search.

°x,

e can nov express the gain Ky (see Pigure 27) as a function of the

Using tha values of 2 and {D in colwmn four of Takle 6,

saturation limits, : Kg. This was obtained from Pigure 6 using
Booton's method of equivalent lirearization. The results are shown
in Figure z4.

Finally, it is of interest to sce what affect the new control
systenm has on the behsvior of the system. This can be seen to & cer-
tain extent by cramining the denominstors of ’the controlled and
uncontrolled systems., The uncontrolled system has a dencainator equal

to,

e 2
Du-s *acuwnu'*mnu | (b4)

there
Cu = 0.174, and
®., = 87 rad/sec
From Figure 26, we see that this is only slightly higher
han the frequency corresponding to the maximum input moment (o= .Th

ud/sec). The controlled system has a denominator of,

) v“n“ ) X, 3

SR A NI 4 Ct g SN
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Pigure 3k

Gain (K,) as & Function of the Limit (K,)

Using Booton's Approxiwation
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D= (s+a) (8 +2¢ w, 8+q.f) (43)

a, = JOOCT raderc.,

CC = '387: and

;.unc = .52 red/sec
8, the control adds . a new pole at g = .0OCT red/sec., shifts the
url frequency to .% red/sec, and increases the damping retic from
4 to .387. Each of these have the effect of reducing the respunse

the system to an input spectrum of she form cf Figure 26,

.2 Submarine Pitch-Heeve Control

The vertical motior (heave) and the vertical rotational |
ton (piteh) of a submrine are very cloaely cocuplad, Thus, i% 13'
practical to attempt to indepandently control these moticns.
ure 35 shows the coupled pitch-heave system with the associated

trol cystem. The nomenclature used here agrees with the SHAME

Jmmendations(ha'\ :
w - heave acceleration
Vv . heave velocity
éo - rate of thange of depth
Z . depth
zc «~ desired depth

%, “a .r'/ﬂ
Ly,
L B
- 1& - Eutey

.......




Pitch-Beeve Control of & Submerime

Pigure 35
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depth error

pitch acceleration
pitch velocity
pitch angle

desired piteh angle
ritch angle error
cetern plane force
-stern plane power
bow plane force

b~w plane powe»
neave disturtance
pitch disturbance
submarine rass
virtunl mass in heaving
heave dmaping

coupling coefficients relating pitching
acceleration and velocity to heawing forces

moment of inertia in pitching
virtual moment of inertis in pitching
pitch damping

total submarine buoysncy (equel to mg for
neutral bunyancy)

metacentric height

coupling coefficient relating heaving acceleration
and velocity to pitching moments
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LB - distance from the bow planes to the center

ol gravity

LS - distance from the stern pianes to the center
of gravity

\4 - submarine forweard velocity

control parameters

Klto K9

There are three saturating nonlinearities in this system.

The one which limits the Jesired pitch angle will behave almo.'t lincarly
for this type of disturbance. The purpose of this element is to prevent
the desired pitch angle from exceeding the specified safety 1limits
during sudden large changees in the dosired depth.

The stern plane and bow plane control loops with thelr
associated limiters are identical to the control loop employed for the
roll control of the previous s~ction. '

The philis»>phy behind this type of submarine depth control
is that changes in depth can be more easily accomplished by changing
the submarines angle of attack than by attempting to maneuver it up
and down with bow and stern plane forces,

The system values chosen for this study are:

m = L4 x 107 1bm.
2v = - 3.5 X lo7lbm-
z, = -8x 106 1bm/sec
8 N :
ZQ = -« 4 x 10 lbm-ft ) ﬂﬁJ
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z = -8x1d 1bm-rt/sec

1 11 2
I = 3 x 107" lbm-ft

d 11 2
M‘1 -~ =2.5x 10" 1bm-ft
Mq = -2 x lOl"L lbm-fte/sec
M. = -4 x 108 1bm-£e

= 3 x 108 1bm-ft/sec

-2.5 x 109 lbm-fte,/sec2

S e

= 200 f't.
Lg
LB = 100 ft.
v, = L0 ft/sec

The input disturbances were calculated Previously in this
iapter and are shown in Flgures 24 and 25. The model used in shown
L Flgure 36,

This type cf model complicates the future.calculatione
mewhat, because the two input disturbances are not statistically
dependent. Thus, the system output density spectra are dependent
on the two input cross power density spectra as well as the two
to power density spectra.

The values determined for the coefficients of these input

Lters areg

Ty = 1.TT5 x 107 lbm-rt/sec3

hy
To1
b2

.515 rad/sec
1.03 red/sec

5.17 x 10° lbm_rta/aec3
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1‘12 = .665 rad/sec

T = 1-33 red/sec
Eight system variabies were used in the construction cf the
ix-Rarking Array (Table 7). The values sclected for the armm: are
salistic specifications for present day sutmarines. As in the pre-
lous example, the final rov was made very high to assist the search-
1g process.
The derivation of the numerous tenth order transfer functicns

>r this system was a monumental algebraic task. Provisions were rmad:

_or calculating the mean square values for twelve systecm variables,

a addition to the eight which occur in the Max-Ranking Array, values

o) ol § 2, o 2, aza, ard ¢ 2 vere 8lso determined. It 18 suggested that
LI Bt 8

or future work of this size, serlous ccnsideration should be gilven tc
imulation teclhniques whick require 1.9 gigedbraic mmnizulation dbut more
omﬁutation time, or formula manipulation mechine languages such as
ORMAC (an experimental Formula Manipulation Compiler currently being
eveloped by th.e IBM at the Boston Advanced Programming Department. )

The Fortran Computer program which wvas written for this pro.
lem 18 iisted in Appendix A.2. The search and cptimization procedures
re essentlally the same a3 for the other two examples.

Finite difference integration we used to evaluate the meen
quare values, in contrest to the direct algebraic evaluation used in
he other two examples. This was required becsuse of the inaccurecy
arried by round off errors in the algebraic approach (see Section 3.3.2).
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or this cade, finite a.fference integration workedvery well. Since
>th input power spectra are narrow band, i{t was only necesgsary to
valuat. the integral over the meximum range of the two spectra. The
:8ults were obtained using 25 increments in the range w = 6 to
, = 2.2. A check on the sccuracy was made by inarsasing the musber
* increments to 5C. This caused less than 0.1% change in the mean
juare values obtained.

The search method was conducted @ little differently for
i1s large system. It was estimated in Section 3.3.2 that approximately
100 cholces could be evaluated per minute for a 10th order system
ing finite difference integration. Equation (43) in Secticn 4.3
ves the estimate of the number of choicee at abou* 64,000 assuning
at (Nc)l is 400. This indicatcs that it would require ahout one
ur of time on an IBM TO94 computer to produce one minixum which then

ul1d have to be checked.

To recduce computation time, it was decided to s*art severeal
»grams at different locations. They were run with search expon<nts

) of one and three., Each of these programs was allowed to run for
»y minutes which 1s equivalent to 1500 to 2000 stable chcices. The

jults of the initial runs were compared. Several new five minute

18 were then initiated using starting points based on the earlier
ults. These decisions extermal to the computer prevent searching
a given arca more than once and insure that no areas will be com-
tely reglected. Using this method, the total time required can be
to about thirty minutes.
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The search space which was inciuded apd the final results of
the search are listed in Table 8.

The nuuilnearities can now be reinserted in the system. The
equivalent gains Kh and KS are replaced hy KSL’ K'SG’ and xm, xm

respectively (see Pigure 35). Migures 37 and 38 give K and KSG as
functions of KBL and KBL respectively for the resulting values shown
in Table 8. Since K. will be about 3C degrees (.524 radians), ‘10
will be equal to .ClC for the results obtained here. |

Tre system response waa agmin calculated iz $he S2ighborhood
of the minirmum. The results of these calculations aie shown in
Figures 39 through 47.

These figures show that thc search results wvere again mcre
accurate than they needed to be. Unfortunately, this informaticn is
never knmm un%il rfher the faet. In reviswing the course of the
gearch, 1t wvas detormined thet the last one-third of the search only
produced an improvement of 1.5% in the system performance. ‘Thi¢ rurther
peints out the merit of first performing several crude searchea when
long total search times are expected.

Another very important fact pointed cut by these figuree is
tuat a 4% change in any cne of seven control parameters will cause
instability. This behavior wvas expected after an étrly, tvo «sinute,
purely random search over the entire search space showed that 850%

of the points considered produced instadility,
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The protlem of moving sway frcm this region (or regilons) of
‘nstablliity cen be very difficult. If each of the seven troublesome
control parameters is moved away from the unstable region simultaneouly,
thers 18 no asseurar~- trat the resulting position 18 not neer the same
or another unctabls cxglon, since no off-axea positions were checked
for ctenility.

It 1s doubtful that many other anine-parameter optimal con-
trols have ever been designed. Therefore, it 18 not readily apparent
whether this instability condition is universal for this number of
parametersvor 1 1t 1s Jjust & peculiarity of this particular yroblem.
If it is a gener&i.pro'blf.m, it would certainly be possible to test each
new minimum to assure that it is not within a given proximity to a |
r-ydon of instability. This could be accomplished by a deterministic
or rendom scan of the surface of an n-dirensional hypercube which ‘s
centéred on che point in question. |

Again, 1t 18 of interest to examine the denominators of the
transfer funct'ons of thc'contfolled and uncontrolled systems., The
unicentrolled system is unatable. The denominator df the tranafer

function 1s:
D, = 8(s + .01622) (s + .OTT3) (s + .3893) (86)
The control system, first of all, must make the system stable. The
final system has a dencminetor of:
D, = (2 + .18) (s + 1.70) (o2 + .097.8 + .018)
(.2. + 216 s + %6,800) (1)
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The firet, sccond-ord-r term hec an wndamp 'i ratura!l frequency of

.134 re3/sec and a darping retio of .3<. This is weli below the prin-
cipal disturbance frequencies (see Figures 24 snd 29), The u=cond,
second-order term has an undamped natural frequency of 605 red/a«:c

and a damping ratio of .178. This is w-1ll above the principal

disturbance frequencies.
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6.0 Conclusions and Recommendations

The Max-Ranking Criterion proves o be a simple but ~Pcchive

method for measuring wad comparing the cver-all poric:

Tt can be readily used as a performapce index for

elther stochastic or deterministic disturberees., It alzo hac T camanil-

However, there 18 1o criter that the author has wncovered in =i
literature which 1s not & special case of this more genecrasl criteorizon.

The Max-Renking Array can be constructed without eny priocr xnow

l1=2dge of the internal interactions of the system. The designer nord
only express his specification for as many meesures of system respouse
as he feels are important to the over-all system performance., If th-

desligner's demands on the system ars unreallistic, the resuits of the

D

optimization study will point this out. These results can then be uzod
to indicate where the specifications must b= relsxed if = workable syotonm
is to be produced.

The one disadvantage of the Max-Ranxing Criterion is thut standsrd
methnds of caloulus cannct. in general, be ased o debermine the cytinur.
For systems above 3rd and S5th order, which require several parapetzrs To he
determinaed for the optimizetion, this is not reelly & disadvantage &t all.

di
t this peint, the algebraic coplexities of the calculus approech be

oW

sverwhelming, and ther means of optimizetion are usually used.
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The criter’on can be readily used with either analog or digiftel
comprtation; in fact, it requires less digital computation Uime then
other multiple-parameter criteria which employ weightirg funciionz.

The problem of determining an equivalent linearization gmin doon

not appear to be difficult, at least for the case of the zaturalting ele-

by

ment. Booton's method has prcven to be acceptabls for this type o
norlinearity ss long as the limiting action is not severe. 1In csses whore
the ncnlinearity cannot be handled in this fashion, digital computer
simulation can be used.

On of the principal advantages of random search techniques is the
ease with wvhich they can be applied to large-scele, complex systems. At
present, the search efficiency of the simpler methods could stand
imprcvment. However, the »fficiency can be improved if one is willing
to accept mire complicated search logic. Mich more can be learned
about the general behavior of random search techniques. Some questions
vhich have not yet becn answered, but vhich should be studied in the
near future are:;

1. How do unallowable (i.e., unstable) regions of various size

affect the search efficiency of the szingle parameter search?

2. Bow does the probability of finding the true extremum of &

miltimodel function vary iith the relative position and shape

of the extremag

- izs . Best Available Copy



3. How does rmultidimensionality affecy the search effeclency?
L. Can large improveme.ts in search efficiency be obtained without
sacrificing too much progremming simplicity?
These are only & few questions which ne=d to be answered in the
areca ¢(f random search methods. Thic 18 certainly an ares whers veéry
little pract’cal information is aveilable at this time; it 1s alsc cne -

where modest efforts could lead to significent improvements ir the

Zeneral area of optimizaticn.
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Appendix A.2 Digital Cougrmiter Programs

The Foriran listing for the three dlgital compte

discussed {n Chapter 5 are inciuded here,

r progams
A zurricient mrber of

Comment cards have been included to explain Lh» loglic end the Enemcuic
coding used.

“05-




TLLE T SATAMT T oSN s oy

-

COMPUTER PROGRAM TCOR A THIRD GRNER SYSTTM wlTu

DIMENSTON AKFU3)oAKMIZ ) dAK (3 oCKOI3) g K113 o IKZII) oRANKI Y417y,
1 S1N0taYAJRT )

READ 10y MIRGMTFST GNSTOP SNLOOP (NEXD 2l C
NIRa NUMRER OF RGWS IN THF RANKING ARPAY
NTEST= NUMRER GF TIMES TH: FNTIRE SFRROM 15 10 RF FOMPyr oD
NSTOPaNUMAER OF STARLF PGINTS RFFOOY TERMINATINA FArW “CAD W
NLOOPw NUMRFR OF LNSTABLE POINTS WHICH wiLlL STRMINATFE Thf . aARC -
NEXPa THE FAPONFNT (M) [N THF SEARZH PRORARTILITY NFNSTTY
ACCa THE MINIMAL ACCEPTABLE CHANGE WHICH (NNSTITUTFS AN IMEROVEMINT

Oy YO YD

RFAN 20, AKDOMFGAC yOMTGAN,7FTA
N AL K{3URSCRIPIYN
z CMEGACE GMFGA(SURSCRIPTIC
< OMEGAN= DMFGALSUACRIDT YN {THE NATURAL FRFQUIIFNCY,
N CETAR TFETh {THF DAMDING QaT 15,

OFAD 20, 1AKF I )37 (0 g CRT I 2O IRy gKm] 43
C AKFLEYs THF S TARTING PCIMT FOU? FACM “FARPCH ~aAmpAur~TTo
‘ (KZtKR)® THFE ML TIPLICATION FACTOR TN FACH ~“FARCH FQ AT 10N
¢ CRI(XY)s “HE L WFR LIMIT OF FACH "FaRrH "DacF
' CK2(X)e THMF UbBPTR L IMIT QF FaACH “FARCH “CLACF

QFAD 20+ {RANK(TaJ)elnly3) s mlyNIR)
C RANK(Tes)® THF RANKING ARPAY

10 FOSMATISISGF1nR 4N}
20 EORMAT (4F 1N, M)
IN FOPMAT(3FIN,N)

C THE FIRST FfW NUMBERS GENFRATED RY RANNOF(R) ARF NOT RANMOM, ThHyuS 17
C 1S NFUTS328Y TS START THIA TYe & 57 UHLTION TNTRATAR,
NO 80 K=l,20
AN G= RANNOF(R)

C INITIAL PRINTOUT

PRINT 100, AXO+OMEGACsOMEGANLZIFTA

100 FORMATL 1m)l &40 TEST OF NEWTONS rONTROL FNR 4 SECOND ORMGFR cvsa
17FEm J/OXAHANNRF 1N g Ly IXTHOMFGA( =S 1A 1, 1Y THOAMF CAN
1613 ,8X8M27TaAR 1 1,7
PRINT 11 : (AXF (X ) 3CKAIK) qCHIIR)oCK2(K)y Tm]l,y3)

117 FORMAT (1AXIMAEFITYIMOKAITX ISR TXAMAKD / (8F 2R ) )
PRINT 120, (IWNINK (T4l sTmled)edul ¢4NIR)Y

120 FORMATLIH AXISHRANKEING aRRAY SIIXSHSIANALISYSH - [ AN S Ya a1 0"
17 (3 2Nedyy
PRINT 130 ACCsNTFITaNLTOP JNLOND 4 NF YD

130 FORMATIIMASXAHACC=F1",7, &YBUNTF 117 AYEHNC OP=T]1",4 &HNLOOP=T11
TaS5RAMNTYPaT1R)

C CALCULASFE THO"F CON-TANTZ “WIrH NO NOT VARY 1TH AL XY,
AlOw 2,870 7,
alls MFOA N ®a)
Al2= le/(AKNBE))
A1z alj-e>

SET UP THF NF(F SARY TEST LOOPS
DD 10nO TTESTe ] G NTEST A6
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[a )

1%0

200

ign
130

3
157

400

410

el

C
To00

erT Ty MEFACCCAIY ~“AIINTER” FAty TA Pe09n
Mlsr
NYen

Nle THE TOTAL NUMAFR OF POINTS TFETEND

NZe THE TOTAL MUMAFR OF STAALF BOINTS TES°FD

SET THE STARTING VALUE OF THE MINTMUM BERFNRMANCE INAEX TO & HIAM Niacd
AJMe 99099, _ _

PRINT TABRLF HFADINGS
PRINT 150
FORMAT(IMOL X 2N GU2HNITIXZIMAJTIXZHUK I IXZ2HR21IX2HKI12X5H4SIGAALAX
1 SHSTGANINXSHEIGAFIOXOHSTIGAV)

SFT THE STAPTING POTRY sON THE “FARCH FPOULL TO TWF BeFscnt: VALUS
HO 200 Kol ,ed
AXM(K)e AKF(K)
AK (X )m AKF{K)

USE THE GIVEM VALUFS (AR (F e AXEIR ) v THF FIRTY TIMF THOOUGH
GO 10 &0n

QANDOM SFARCH R7ITINF
DO 3950 Xa}l,d
AK(K)a CKO(K)®I2 , CRANNOF (Rja] j0ONFXDO sAKM(K)
IFIAR(IRI=CRI(K)IIBINGIVN,IIN
IFIARIN)=CR2IX)) 3ISN ISP ¥ID
CANT INUF '
Nls Hlel

TEST TO SEF 1F OO MANY UNSTARLF BPAINTC HAUF REFN CHAZFN, (THIS [4 &
SAFFTY SHUT=OFF)
1EINI=MI=-NLOOP) ANN,8AN,INA

CALCULAYE THOSF PARAMETERS WHICH NDEPFNN UPON AK (L)
AZa ]loehk(])
AlelAINGAK ] 7)) SOMECAN
AQm (]l ,¢AK '3 )0A))

CHECK STARtL ™Y
IFLA27A0) 3NN G 01N
IFLAYZANY 10N 461l gb Y

CALCULATE THFE MEAN SQUARE VALIIET OF THF FAUN VARIARLFS
D%s A2
D2® A)+A200MEGAT
Nle AB+AL#OMFOAC
Noe ArSOMEGAC
OFLTAs 2,¢n0enits(nien2-n0endysal?
SIGQI1)v DOSNI/DFLTA
S1GR12)e A1YND20DI/DELTA
SIGQUIIS(AK(1)#8200N8N 1o (OMFGANSAK D) 10822 SAK (110411 04K (Y
1 *DNENIs(ALIRAK (1)) eeden28NYy/NFLTA |
SIGILA)e AlYerNeny/AFL T,
N3s Nleld

HAYE FROUGH STARLF PGINTS REEN TRIFN
1FINV=NSTOR) 100 1ANN LI AON

DFTERMING THF PERFORMANCE INNFX, AJe FOR THIS POINT
‘J. ng
DO 7170 Js 3,Y
DO 7120 (Ra 24 NIN
I1FIRANK(JoIR} = STIANLIYY 7200 T8¢ 728

v Best Availahle Copy




YR CONT NS
a0 10 3on

126 A)Be 1IN

72% AJR( Uy Atﬂ-?.ol\lﬁQlJl-'A"llJol“‘l!Oll'lﬂlfJoY'l-HANK(JoY’-Ili
TFLAJ ~ AJR(J)) 8%, ?7A, 779

188 aJa AUR(J)

170 CONTINUE

1S AJ SUFFICTENTLY RFTTER ThaN THE PRFVINUS VaLUF
TFtajsaom - arc) 7400300, 300 .

INDEX THE VALUFS FOR “HE NFw s[NTam e
780 DO 79N K4
790 AKM({K) e AR K
A e 4

PAINT THE yFw MIN[Mym
PRINT 800, ~lo~30lJﬂo(ll(llol.lo3io|<|GQ¢JtoJ‘lt"
800 "ORMAT(2]16,8F % ,a)

RETURN 10 <EF |F A NEw MINTMUmM AN 8F FOUND
GO TO 3¥IND .
90 CONTINUE
1700 COMNT INUF
caLL Fry1Y
Fap

- A.8 -




aNaNa¥a¥al

laNa¥aXal

[aXaXa}

COMPUTER PRUGRAM FOR 5 FIVFP~=PaRaAMSTER ANLL rONTROL FOR A SURMARIRS

OIMENSTON NAE(9) o \K(9)oCKOIS)oCRTII9)4CR215)oAKFIG)AKMIS)oAEN(S),
1 RANKIA4INIeACCII2014RLII20)1eNFII2N)4AIN(A)4STIRNIB) oSTIOMIA) LK)
1 o NSTORPI20)

READ 204 NIRNTAGNLIOP ML oML
NiRae THE NUBARFN OF AOWS IN THE RANY ING ARGAY
MlAe THE NUMAER OF INNEBFNNENT SEARCHES TO RE MANF
NLOOFe NUMRER OFf UNSTABLE POINTS WnICH WILL TERNINATE Tef SEANCM
MNI3Le NUMBER OF PURELY RANDOM PQINTS TO BF TRIFD
Mo RUNAER OF CONTROL PARANETFRS TR AF SFaARCKMEN

READ 22, ARFIK)oCKA(R)IoCRIIK) gCKI2IK)y K 149)
ALS (K)o THE STARTING POINT FOR FAC 4+ SEARCH DARAMFTYrR
CKNIKIe THF MULTIPLICATION FACTOR 1M FACH SFARCH FOUAT!ION
CRI(R)e THE LOWER LIMIT OF FACH SFARCH SPACE
(K2(K)e THE UPPER LIMIT OF FACH SFARCH SPACF

READ 26,5 (LKILIy Leoly M)
LEKIL)e THE COMTROL DARARETFRS TN BF SFARCHED

READ 98, OMFGAs 2FTA, EMASS
THE NATURAL FREQUENCY, NAMPIRR RATTIO, ANN MASS (OF MORENT OF [RNFERTIR)
OF THE SFCORN OANFR SYSTEm

READ 3%, S0, ETAN, FTR]
THE IRPUT FILTFR PIRANETERS

READ AQ CIRANK(ICs FR)e 1Cm 14 &)s IRe Dy NIR)
RARLUTol)® THF RANKING ARRAY

READ ASLIACCYLIAY, NEXITA, JNSTOP(TA)y lAw 1o NTAY
ACCe THE MINIMAL ACCPPTARLE FHANRE WHMTICrM CORSTITUTES AN [WPROYFNENT
NEX® THE FXPONFMNT (M) [N THF SFARrW DRORARILITY NENSTTY
NSTOPw NUMARER OF STABLE POINTS wHICH WILL TERMINATE THE SFam(y

20 FORMAT (819

22 FORMAT(IS, A4F1N,0)
26 FCRMAT (91

35 FORMAT(I§1INGD)

40 FORMAT(4ELN.Y)

A% FORMATILIFINGO, 31%)

THE FIRST FFfuw NUMAFRS GEFNERATEN AvY RANNOT (A) ARF NOT RARNOM, THUS TTY
1S NFCFSSARY TO START THIS TyPe OF FURCTION RAFNEFRATOR,
DO 80 Juw 142N
A0 G® NANNOF I R)

INITIAL PRINTOUT
PRINT 100
100 FORMAT (1H156X19N A GALL = COURSE 2//849X41HOPTIMUM FONTROL « Flye
1 PARAMLTER FFFOAATK/GQXAM0HRANGOM SFAQCK SOLUTION = MINaMaAX NOT 1aym
1 [
PRINT 110s ((RANK(1Ce IR)y Ifs Lo )y [P 14 NIMy
110 SORMAT(INNSSIN20MRANK=RETGHT ING ARRAY 7 ISXANSIGALOXANSIAN]SXAMS I8
110X8HSIGF /7 (560,33, 3F2n,3)y)
PRINT 119
- 4.9 -




119 SOAMAT( IN0)
PRINT 1a00 OMEGA, 2FTA, EMASS, SOy "Tan, FTal

160 FORMAT (SRONOMEGAREINGY, INNLIFTASF]IA,Y,: IXIMASSe “1M1,30 TXINGO®
1 FINGDe IXTHETAIOIOF10,90 IRTHMETAIL VRN,
PRINT 190 IRAKIK ) gARF IK)oCRNIR ) oCRIIN§CRTI(AYy Kl o%)

130 FORBATULIMNABARIZHSFARCH ARRAY /22XOMRAK(KIIAYAHAKE I )ISXONIKA(IK)
1 JAKOMCRLIIN)ITIARGHCE2IR) / S(20R]1%, A®20,3/%)
PRINTY 119

¢ CALLINATE TORSEICIENTS WMICH DO NOY wrorwn UPHN AKX )

Cale 24 & Z257A o (WAFQRA
DShe ETAL} o CAY
N9%ae OMFGA o8
Daas FTA}
OY2e ETAD oo
Da%e DIA ¢ CAYl & FTALl ¢ D%
D30e CA)l © D3A o FTA) & D%
D26e D\A © D3
CAe ETAQO

200 DO 1100 lAe 1o NIA
PRINT 21Nne ACCY(12)e NLEITTAYy RERITAYg NSTOP(IAY, NIL

210 FORMATIANOMACCLo® 12,60 X0MRL]IT0, 11X EP 2,1 2XANNSTNDS1S,]11XANN
13019y

C SET INITIAL CONDITIONS
290 AUMc 99e%9,
Nie N
N3=0

RANDONM SEARCH (A PURELY RARDOR SEARCH 1S CONNUCTED FOR THF FIRST ML
TINES « CORTROL PARAMETERS TO BF SCELECTFD CAN BF VARIED Ay CHOOSING
(4 4] §] )
NO 260 Ks ] ,9
ARIE) = AKF(RS :

26N aum(Kye ARFIK? ' ’
kfRGe §
¢0 70 370 |

300 1FiNY = NILY 301 3020 V2P :

301 NFXPe ) |

» a0 TO %20

302 NEXPe NEXITA)

320 DO 330 (e 1o ML
Ke LK(L)

323 Go RANROF(8) ;
AK(KYe CRNIKY @ (2, & G «~ 1ot SeNFXP o AXM(K) -
IFIARIN) « CRTIIRD) 329, 9280, YO0

320 1P IAK(IR) « CR2(K)) 390,y 390, 979 } 

130 CONT I NUF '

aNa¥a

c MAVF TOO MANY UNSTAALF POINTS AFEN FOUND |
I1E(N] = N3 = NLOOP) 370s 10%0s 108N '
370 Nle NI ¢ |
C MAVE ENOUGH STARLE POINTS AFEN CONSINFRED
371 IFIND = NSTOR(IAY) &00s 10O0e 1000

4 CALCULATE DFNOMINATOR
400 NS N3N o (1, ¢ NCA ® ARKIY))® AK(S)
Nae D40 o (NSH o NSA & (DA @ AR({L) o AK(2)1) ® AR(S)
D30 NIN o (NAN o NSA © (DA @ SKIL) o NGA & AK(ID) o AK(V)))® AK(N)
N2e N20 « (NN « NS4 @ (DIA ® AK(2) o Mot & AK(Y) & SK(A)Y)® AKIN)

-‘.m.




821

24

827

429
440

300

321

3

Sat

L ——

Dl; (020 + D3A & (DIA & AK(Y) « NHad & AK(AY)) © AKINY
NOe N20 & AK(N) © AK(S)

CHECK STAALITYY
DAe D& - D) s DS
1FIDAY 300, 300, 821
bD8s D2 - D1 /7 DY
DCa DY = DS o DF 4 DA
IPIDCY 30N, 300, 26
DODe DY = DA & NS ; DA
NEe DA = DA ® BN 4 DS
IFIDF)Y 300, 3NN, 427
DFe LD = NN 8 NC 7 DF
1FINF)Y 300, NNy 29
1FL0%) 3004 300Gs &a&A
N3s N3 ¢ )

CALCULATE MFAN SQUARF VALUFS
EMle DO * NI ® NS & DO * NI 962 o NY 082 ¢ NG = N1 & N2 o M)
EM2= DO ® DY @ D9 ¢ D]l 982 « N] & N2 & NS
EMls DO ®# DO 202 ¢ D1 & DY = N] & Na & NS
EMae D2 NS 902 « D) 8 DO @ NG « N1 ® DA ¢ DY 09
FMASe DZ ©® EM4 « Ny & ENY o *0)
FMNe D& & EM] « DO & FMD o NH o FuY
NDELTA® DO & ( =« NV & FMQ ¢ NS @ FMI) o DY & FMaS
CBe D3A & 2K (S8) ve2
CCw» DSA ® AK{Y) ee2
CDe ETAD + AK(Y)
CEw FTAQ @ AR(S)
D8O 30 /7 (2, ® DELTA)
D81ie DOO /7 FraASS o002
D62 DBO @ D3A 002 # AK(Y) ee2
$IAReLYe OBL @ (FRA o (O & FN] o (C o FN2)
Jel .
6D 70 00
SIGECIS s 8] » (FM2 o €8 @ FMY o CC & Fug)
Jog
60 10 700
Chon CASAK (1Y) +» Ax(2)
Cle CARAK(2) o AKL(D)
Clw CA®AKID) ¢ AK(AN)
Cle CAGAK (&)
ClAa (40¢2 ~2,0C30Mx (]}
ClBa C38002 22,8(20C0e (0 oAk ()
ClCe (2002 =2,0010(Y
SIGRII)Ie DB2R(AL (11092 MO IACFMNIG/IRSFNIGC 1 CoF 430100 BFNg)Y
Je3y
a0 10 100
SIGRIG)e DI2O(AK(1)00)0 SEMLAC 1AM, INIENILrICOFMASCASEISAL Q) 0
1 FMAS2(D200aR (%))
Jeo

CALCULATE FACH AJ FOR THIS POINT
DO 720 [Ras 245 MIRN
IFCRANKE (JoiR) = STIGRIJYY) 7200 7286, 774
CONT I NUF
60 10 300
AlfRs IR
AJR(J)e AIR=2,01ST1ORIII=RANKIJoTR=1) ) /INANK[JoIR)=RANR[Jo1R=1))
IPGADN= AJRIJY) N0, A0A. 794
GO TO 1521 931, %41 78G)e J

-“u-




780

768
179

| QL]

820
829

901

1706
1090
1081
1100
1101

AJdes A,

DO 770 Je 146

1FIAD = AJRLJY) 765, 770 770
Ade AJURLY)

CONT I nUE

1S AJ SUPFICIFRTLY RETTER THal THE PASYIOUKS VALUP
IFIAJ/AM o ACCTILITAYS AND, 3N, AN

1F & MEw MINTMUR, CALCULATE ThWf REMAINING MFAR SOUARE yaALUFS
SIGNISie DEL © (FM) o CA & FM2? & (C » FH?2)
Che CD ® AK(1) & AK{I2)
CI¥» CF @ AKI]) ¢ 7D @ AK(2) o AK(YY
C2e CE ® AK(2) + CD ® AKID) ¢ AX(S)
Cle CE ® AK(3) o CD @ Akl
COe CE w AN {S)
SIGRIGIe (DOI/AK (V)00 )10 (AKI1)1002 STMOG(CA902 =7, 0C0AK (1)) 0F Mo
1 C902 —2,0020C802,0C 10AK ] ))0FM24(CRO02=2,8C10(342,00N0CH)SFNYS{(
1 CL902-2,0C00C 2195 MaeC OOCFOFMAS/(NH20JAR( V)

STORE THE VALUFS FOR Twf New MIn]ugme
NO A2C Ko}, 9
ARM(K)e AKX}
DO 829 Js 14 &
S1GKR(J)Ie SIGRLY)
AJus AY

PRINT OUT NEw NMINIIS AND THPN 60 BA7K AND SPARCH ARAIN
PRINT 901, (AKMIX) oK@ o3) AN ISI8NIJ)eJn]le0)
PORMAT ( TRIMRASFL2,5) SKIMEVEr]2,3, SNIMEDCE12,%, SNIMKFoF]2,%,%
1 IMKPel12,%0 SAINALEL2,5/4N0NSIGRASE]L2,5, 2XONSIGENF]12,%, 21
1 OMSTIGRPeEL2,%0 2NOHSTERFoFL2,5, 2UONSIGAVEF12,%, 2XONSIGRLIF]2,9)
6O 10 00
60 70 1100
PATRT 1031, MLOORP
PORMATISX 1405 DISCARDFD VALUFS ARDYS THE ALLOWARLY MAX THUMY
CONTIRUE
CALL EXIT
N

-‘.n-
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(2a¥aXalaXalaXala)

~ (e XaXaNa)

[a) [aXaNa)

COMPUTER PROGRAN FOR A NINF-PARASFTER P Co=uFAY® CONTROL OF & SURRAR NS

LIsY

DIMENSION CLIOI?o2) AL 100 ,ACTIN)STIARRITR) JRANKIN,10) 40010,

1 BLI0N0Ye PELITIOM uwl 1N08 WAL INNYI oMITACT NI JAKI(9) AKNMIO)

T1oAD( 111 0AKF{0) ,CKN(0) RV CHI Q) NFRITIQ)JACCIIN) MLIII7) oL K19y,

"y SIaMil2)y

10
11
12
13
14
1%
16
17

COMMON KoCTA2Y :F A220A000C sAs " 16 Y sRANK AJRGACIACC JNEL oM VWA Mo AN
IFLALAR L)

NATA INGUTY )
READ 100 MLe NTA, R1Qy NMLOOP, NIL s NAL NP YR
NL® THE NUMAERR F COINTROL PARAMETERS YO BF "“FARCKHFD
NEA® THE TOTAL NUMARER OF COMPLETFE eFARCHE S TO AF CONDUCTIN
NiRe NUMAER OF A0WS IN THE Rank [NR ARRAY
NLOOPs NUMBER OF UNSTADLE POINTS wHICH WILL TERNIRATE THE SEARCH
N3Ls THE NUMAER OF SURELY RANDOW CHOICES TD AF MADS
Mo THE NUMBER OF FRZQUERCIES USED IN FINITF DIFFERFNCE INTESRATION
NaLe THE NUMBER OF SEARCHFS 1O RE FORDUCTEN WITH EXPONENT NEX SO
MNEXPDe THE SECOND OF THREF EXPONERTS WwHICH CAN BRE CHOSEN SOR THMF SEARCH

RFAD 11 tLR(1)e Teloll)
LEilde "™ CONTROL PARAVETERE wiiCw YILL AF CSFARCHED

READ 180 AMASSJAIY o 2N oZWD AN AN 20 70N AND ANON RPA U LALR AL
THESE ARE THF Sve Wi PARANETERS WHICH ARE DPFFINFD [N SPCTINN 9,2,2

READ 120ETA21FTALL T TAAL FTa22,F72]4,FT48
THESE ARZ THE 1PUT PILTFR PARANETFRC DEFINED IN SPCTIT 9,2,2

WA ‘!o‘lﬂ?l!’.(tﬂ("ofﬂ“'lo(l?lllo e 1.9)
ARF(K}s THE STARTIOR POINT FOR BACKH SFARCH PARAMETYER
CRO(K e TME W YIPLICATION FACTOR IR FACH SFARCH FOUATION
CRIIR)® THE LCWIR LiVIT OF FACH SFANCH SPaceF
CR2IR)e THE UBLFR LIMIT OF FACH SFARCH SPACE

READ 175 ((RANKITICLIRY, 1Co 1,00 10w 1, NIR)
RANK(1¢J)® THF RANKING ARRAY

READ 1%¢ (ACCITAIoMLIIIAINFX(TA)s TA® 1,R1A)
ACCe THE MINIMAL ACCIPTABLE CHANGE WHICH CONSTITUTF® AN 1HMPROVFIENT
NLSe THE TOTAL NUMAFR OF STARLT SEARCHES TO AF CONPYCTFS
NEXs THE FXPONFNT (M) [N THE SFARCH PROMASILITY NERSTTY

WAtMIe THE FRIQUENCIES TO ARG NSED IR THE FINITE NIFEFRFNCT INTFRRAT 1A
READ 18y (WA(NM)y Mol mh)

CORMATINILINY
FORMAT(913)
FORMAT (6 1743 )
FORMATIAR1INGY)
FORMATIBF10M)
FORMATIELN,0e 2110)
FORMAT(TEL1O0e )
FORMATIAY L0 V)

-u’.




c THE CIRAT Flw RLMAER, GENERATEN Ay QANNOF(R) ARF NOT SANANM, Tays 1T
Iy 1S NECESRARY TO START THIC TyPr OF FUnCTIIN AENSRATOR,
NC AN Ke]le20
Al e RANNOF(N)

4 INITIAL PRINTCUT
PRIAT 19~
100 PORWRY (IMINB219 A HELL ~ “GURICE 27,4074 1MCPTINUM CONTROL - NINS
1PARAME TFR TFLLAACK 7 AERANMEANANON T FARFKH SOL ITION «~ MIN=MAY NBT N
PRINT 117 UIRANKIICHERYs 1Ca 1,801 1Re 14 NIRY

110 FORMAY (1M 95220HMRANK P IGM TNAG ARRAV ¥ LSyctn7a srmva
1 st162f c1aTn S1GSP i i
1 SInRe 51GRF 7UOXAF1S .4} )

POINT 100, AMAT JALY "W WD ANV AMIN 2,70 AN AN A2y 114 oALR,
Y ALSeFTA21 %1811, 18r1,2T827,8TAVa " TaNG

120 FORMATIINALISXS WA Sef10 S TR NIYSF]10 9, T INTWoF (A, Y,4vau whar 1A Y,
170 3Mueg 11,0 NaHMuUNSP N/ 13XINAFIN, 3,0 X8KH2ONF1A,Y, TY NN
161063002 amMODEF 2o o0 X0MBZBF N, 3,70t "aElA 3, /137 INLAF]A,Y,
LIRIMLS . g e/ 1ORAMETA2I®FIN Y, ANEMFORATI bR, Y 4 YANETANaFIN, S0
LOMETA22 €100 )o<AAHEYAIGeEIN Y oOXEHETANGR LA, Y)Y

[ CALCULATYE PRCTE CalamETERe wuiCi) DO NOT AFDENe UPON AKX (XY
150 Atl)s 1,/ lAMA S ~ ZwD)
Af2)e AL]l) @ 2w
Al%)e 14 /7 (ALY =« AMOD)
AtLIN)n A(S) & AMy

Al31)e A(Y) o Amgh
AlANYe A1) ® 120 ¢ AMASS & yM)
AlSl)s AL)) & 20D ' ) .
AlOD)e A(YS) & A2A
AtSl)e A(3) ® AMO

AL700s 1s = A1) ® A(SM])

AlLTH)s A(30YIOAIN]YALI])%A(ANYYGAIL18])04L2)
AiT2ye ALINIGRIA0ICATSH0~AL28A10)
Al7%3)= AG2)0A10) '

Dillre AGT70)

C 15 DU11) 1S NEGATIVE, THF STAAILITY CHECKS LATER ON IN THE PRCGAAM ARF
C INCORRECT = THUS THE PROGRAM will BE STOREFD HFRP
TFINEI1YY) 198, 188, 160
195 PRINT 1%

156 FORMAT(10XS0MD]IL S NEGATIVFe MAKING THIS PROGRAY [NVALID )
GO T0 110
< CONMTINUE CALCULATING COFFFICITNTS wHICH DO NOT NFPENN UPON AK (K}

160 A(V¥)e FlAN)e@?
Al&)s ETANGES
Alb)s ETALS
AlY)e Sta)
AtB)Ye O,
At9)s FTal])
AllN)ye FTAYY o FTAlS
Alll)e A(3) & Aln) o FTAlleFTAlS
A(12)® A(Y) & FTALG o A(N) & FTAL)
Atl3)e A(Y) ® A(S)
AllIa)s A¢)) oo b,
Atl%)e O, i“‘\;h [
All6)e TTAle e
AllT)e AlS)
Atl17ys CTAL)
AlLZD)ys ALY

- ‘cl‘ -




[aXaNaXal

100

L L 1]
n

302
303
s
320
23

120
130

332

Ct7slel)e 1,
F(Teled 1® AlSl)

Clbollolle 1,
Cltoelle2)= A(S]Y
CiTe2elds B3]
ClTeZo2l® 1o
Cltéel2el)® A(I])
Cltoel2e2)" 1,
Ct9e841)° AL3Y)
CtSs0e1s 1,
2184341)% -1,
Ci%e%02) =AM
ETA?1s FTAQ1eA (1))
ETA22« ETA22041%)

CALCULATFE AND STORE THE POWFAS CF wA(IMS WHICH ARF USFD LATF® ON
DO 170 Ma] NN
Ga =WA(M)®e?
DO 170 N=2,48
WiMeN)2» GORIN-]1)

SET INITIAL CONDITINNS
DO 1000 tAs 1, NiIA
faAelA
PRINT 1800 ACCITA) JNLYTTAY JNFX (1A}
FOQQA?(lNOS!AHAC’-Ilﬁ.7.0IOﬂNL!-l61PlSNFlD.-lll/ll
AJMe 990060,
Nie 0
N2= O
0O 200 = 1,9
AR {I1ye AKF(TY
ARMilYs AKF(])

RANCOM SETARCN w THE FIRST TINE THROUGN: THE INIVIAL VALYFS ARF UsPn,

THE SECONMD SERTES OF CHCICTS CAN BF PURFLY RANDOM, THE THIRND SER]FQ
HILL WAVE TME EXPONERT NEXPO, THE FINAL GROUP WILL HAVF THE FRPONENT
MERe TNE LFRGTN OF EACH GROUP FAN RE VARIFD,

NEXPe |}

a0 Y0 3y2

CHOOSE AKLY)

1FIN3 = N3L) 301, 302y YOI

NFX®s |

6h YO 320

NEAPs NF XPO

60 TO 320

1FINS « NalL) 320¢ 308, 320

NEXPe NEXLIA)Y

DO 30 Les (¢ ML

e LKLY

Gs RANNOF (M) 4

AK(1)e CROU1)1B(2, *CRa) )0ONFXP + AKN(Y)

TRLAKITY - CRYETYY 329, 328, B8

IF(ARITY = CR2(10) A0, I%Ay 2% .

CONT INUF i

HAVE TOO MANY UNSTAALF POINTS BEEN DETFRNINED
IPINL « N3 = LCOP, 332, %00, 00
Nls Nl ¢ )

CALCULATE THOSE PARAMETERS wuiiCH DFRENS ON AKIK) AND WHICH ARF ﬂf’bfﬂ
FOR STABILITY CHFCKRING

- A5 -




4NN BilN)s «AK(])
Mi1l)e «AK(1) ® AR(Y)
Ri2%e «AK(1) ® AK(2)Y
AIT0)e AK(Q) & AX(Y)
Bi711a AK(0) * AN(Y)
0120)e ARIQ) & AKID)
Bi21)e AKI(S) & ax ()
Bi301e (-AR({4: & AX{(91) * A7)y & NI
ANiSTre («BI2IN) o A2V} ® 41}
Btan)e Yn & AR
B100)e («ALS & AKIS) « ALA @ AKIS)) & A(YS & M(T1)
Bl61)e (=ALS ® A(O20) = ALR o AgD1)) oAy
RiT29e BI11) ¢ Atal) o al8Y)
ALT3)e RIBL) o A1) ® AIYY)
RITa)es AE30) o ALQAOIORIA1) & AIAY) ® NIGG) = A(AY) & RV
Bi7%)% NI40) o A(N]1) © AIIAY & AIIN] & A1) « A(2) ® A(eY}
Bi761e A(GY) @ PIN0) o AIGD) ® RIBL) ~ Ala) ©® RIANY
BET79e AI0)® RIINY « AL(2) & N(GM)
BiTAte A(G0) ® R(Y))

CALCULATE THF DFNONINATOR AND CHECY STABILITY

NIIAYe 82733 @ ALY BT @ AIT2) = AN(A) ® AT~ ALTY) {

IPINLINGY 32N,y 974, A1N K
A10 D(%)e A7) )SAITNI-BITAO2[{TI)=RII1)ER(TF1=AR(TIOR(TU) <RI ISA(74) ‘ P

1 «AK(S)IOR(T4=a (1) ‘ "

DINYe=AITI)ICAITI)=A(TO)IGAIT2)=RI11 )OS (TR)=~AK{TION( TR )=R{1D)OR{ T}

1 «BLT73148(2)10A(78)1=uK(S)1N{TV)0A(TY)

Dae DI®) ~ NI11)ONI8I/DIL1NY

IFIDAY 3204 320, 811}
811 OiT1e=B(7110A1T2)e81T7H)1CALTI)=BI10)NITL)=DIT936RI 11 1A TA)-A(40)

108(73)=AK(T7)IGBITY)eB( 2126178

DiGie RITIIGALTIN=PILOISB(TISIARNIINION(TRI=N(TTI4R( 11 PA( TR

DRe DiTS = BiIsISNILTII/INCIN '

OCe DR} -~ DREN(ING /DL ‘

IPIDCT 320, 920, 612
412 NiSje «B(ROIGA(TT) o+ AI10)OR(TRY

IFINIS)Y) 320, 927, 41Y
419 DOe Die) ~ NiS)eN1MY /DA

DFs DB « DOGDA/NC

IFIDE) 32n, 920y AlM
414 DFe DD «~ DI(S)ODC/NE

IFI(DF) 320, 320y 418
419 N3e NY » )

HAVE FNOUGH STARLE DPOINTS AFFEN EXAMINFD
IFIND = MLIL[A)) 419, TR0, 70N

CALCULATF THF DENOMINATOR AT FACH EREMIEFNCY, WA(M)
410 DO 420 tel,y 11
420 ANI1)eD(1)IeAL101ON(T - 110A1111ON{IT14296AC121¥N 1o 1)0A11%)0N (104}
DO 43N Mel, wnN i
NELLe ADILY o ANI)OWIMG210AN(R)IOW (M N )0AD(TIOW (Mo )oANIO O (M,8) !
1 saDtil)owiM,b)
DEL2® WAIMIS(ADI2)eANIAIONING2)+AT. ($)10u(M,3)0A0 (B)SNINgQ)eANIIN)®
1 winys))
430 DEL'Mys DELLIN®Y o DEL2%0Z

CALCULATF THE SFVERAL MEFAN SQUARF VALUFS OF TwE SYSTFM VARTARLF®

A0 Clbolol)ns RITN)-AK(G)IOR(BY)-01AY)
CtB0lol)s =A(G1IORITIN)4ALITI]1=AKIAIORIENI~AKITIOR{AY)
Claolol)s ~A(OMOARITA)=alB])0R(7])

.‘.l‘.




[ YY)

LYY
430
454

435

458

A%9

440

Cllelollm =A{AO0IOAITY)=AIANI-R(4N}RIAY)

Ct2elolde =B1401081860)

Clbolo2)e AISIIOBITIICALION)AR(BIOA( Y

Ct3¢lo2le ALAD)IIDITOIGAINL IO (TLeAKIGIOR(IBIGRIILIOAKITY)
Claolo2)e AIANIGAITIIGARITIOR (N R[] )

Cidelo2)n BII0IAI3L108B(M0)

C12s3e2% BUNIIR(ADY

Xe}

CALL SiGma

1FIK) 800, INN, ANS

ClBo2ol)e AIYIIER(ITI0IGAIIN)ALI 1904

L8026 ALINERITNIGAIIN IR ISR IUR(EAISRITILIONR(SY)
ClAs2olle ALNDIORITL)GRILINIGARLIALISALITIIIINIEN)

NATYISIL I IS LI I 1) :

Cléhe2e)e 6(70!~ﬂ(23'ﬂ(!li-l€2|

ClBa2e2)0 ~AL2ICRITH)ISB(TII-REI1IIR(AL )R- AN
Clas202)% =AI21PA(T11=AL1IN )N )-ALTI] oA 1)

U202V =REIGIAALIN)

Xe2

CALL STAMA

IFIR)Y 80806 1AM, 449

DO 4%C leleb .

Clledolde UGEC 110392011 = Clle24lel
Cllede20e L58C [o%4202 = Clle2eled
Ks$ .
CALL S1GmA

IFIK) 800s 300 494

DO 45% s 1es

Clladol)s Cll020201)

Clione2)e Cl1+2e202)

Kag

TaLl Slama . :

ITixXY 890, nr, 4908

CACULATE ““RF DARAMETTOS WwHICH VARY WITH AKIK)
B{9)e B12) ¢ A(YI)IBANL(S)
B(01)e A(IOIPAK(A)*RIT1)=ALA1ION(2)10A(31)%AK(T)
Bi92%e ~AX(1)1=~ALO0)PB(2)¢A1301PAKIT)I4A(IL)=ALS2)OP (1]
D931 AIJ0NGAI1ION(AMN=AISNINRIL])oALOTI AR (])
Bi9d)s A(INIOB(ALI-AI8DI*AK(])
Bi9S)e Atal)eoR(214+AK{8)
BI98)= A(ROIOB(2)1+A(41103(11)0AK(T)=AL2])"AK(S8)
R'G7)e ALGNISA(11V1=-2{01)%AK I )0l o=0(2)0AKIY}
R(98)s =AIAN)RAK (Y100 (AN =A())
R(99)e ~A{2)10040)

CALCULATE MORF MFAN SQUARF vapLuf$s
CliTe%:1)sBrONn)0R(>N)
CtTeS562)n BI9%) s8(20)
DO 460 s 3,8
1= 9% -~ |
ClloS+1)otAK{I)#AI]1) » B(l1le1l) 1en(20)
Ils 101 « 1}
ClTle%02)0(AK()SAIIL) o BiTlsly 100(ON)y
Cl2e%¢1)® AR(9)2A(94) o8(2M)
Ct2¢%02:% AK{J)OR(90) *R 120y
Ke$
CALL SIGMaA
1FIRY) 8C), AR, 444

- ‘011 -




004 DO 449 (o148
Clleboldm Cllal0%,1)

483 Cllebo2)® CiT410%¢2Y
Ked
CALL SsIGMa
IFIK) 800, 300, 448

409 CiT7¢7,1)" ALO0)Y sRt21)
Ct7e7,2m R109) *8 121
DO 470 °e 3,8 '
1le 8¢ -
CtleTol)ntANIRIOARLITIeN{S14]) ILLIEAN]
Ile 101 - }

TG ClleTe2 1o lAK (RIS [T1)oA(ILel) JeR{Yy
Ci2eTol1n AR(B)IOAI94) oB(2])
Cl2¢7e2)s AK(B)OR(00) "MM(21
Ke?

CALL SIGMA
1F(K) 000+ 3000 476

476 DO 479 (=]1,4
ClloBol)s Cllelelyly

O73 ClloeBe2)a Cl]a107,42)
£ ]

CALL 31nMA ,
IFIRY 810, 30N, A7

THE REMAINING MFAN STUAPE VALUES AP CALCULATED CHLY [F & NEy (TN IM m
HAS BFFrN FOUND

879 CtTe% 1) AK(2)Y

ClTe9:20¥e AK(2)0A(A])

DO 480 1e),¢

Cllo% 10 AKiI3IOC(I0141,1) & ARSI2VOC(Loioly - Ctle2p 1)
480 Ctlo9,1 e ll@ﬁb‘(!lolololl ¢ AX(ZIRCHITaLled) = Ciledp2)

XKo@

CALL Stama
401 CtTelNel)e B290

Cléel0olin N 070)0ﬂ¢'010li01’

Cl3010010® AR(TIIOAIINIIAITOIGA(9] ) 4R (97

CladolNolre MITI)06 (€4]1)aAIT019M(02)4R1 Q)

Ci301001)e REITIIGAIG21eALITINIIN(IOY)eA (84}

Cl2010010s RIT1)0BI93I4AITOION (%)

CllelNelle BLTI1)EN10)

ClTel002)e B(9Y)

CloelBedde PLTININ (98 )enI0g)

Cl3e1002)% AIT1ISB(9%)eRITAIXA196) +8(87)

ClaplnNe2)e BITIIOBINSIAITOINA(ITIOA(9A)

Ci%:10,2)0 BUITIIGSAIN7)4AITHINA(IR) 0P 99)

Cl2010e2)2 AITIIOR(OA)ID(TA)OR (90

Cl1el10e290 21711001 99)

Kel0

CALL SIGMA L
489 N0 490 e, s

Ctlelloldm Celelal,old . ,{%#KQZ -
490 Cilel102)n Cllelole2) PRI

Kel]} : ]‘,_‘;\;;g: G

CALL SIGMA R
494 DN 495 192,.%

Cltiel2¢slde Cilololel)
493 CiTel202)= Ctlele2,2)

Rel2

ZALL STGMA

A8 -

]
S
l - s . _ N

e e e e s o et




STARE THF VALUTS FOR THE Nfw MINTMyM

0O 5%0 Ix1el12
990 SIGM(l)es SIRRIT)

AJeQ

DO %60 J=lod

IFLAIREIY « AJs 560 360 558
358 AJs AMREDR
380 COWTEMUE

AJMs AJ

NO 370 f= 1@
570 AKM(T)w AK(])Y

PRINT THE VALUTS FOR THE NFfy MINIMNuW
PRINT G0O0s NYy AJUMe (AKII)y 1o 349
600 FORMATISY2HMYn [8, SXAMAJMe Fl2.83/50THC1-0)s 3XOF1248)
PRINT #1190 Nl 1LIGM{IY, *s 1,12)

610 FORMATI( MM 18 s 3nOMHSTGIAREIN b bX8NSTIGTASEIN A0 XoNSIRIFaFIn, b,
JaXOMSIGTIDRE L e oW XBNS GSPaE L0 As0XOMELIASESE 10,00/ 1AKGHSIGRPSF]LIN, b,
1aRIASIGAF rE 10 oo NAHSTIG2ZL1aF 10,0 edXAMHSIGTISEIN 4 XMSTIG2VeEINGA,
14X8MSIGTVeEEL1N,8)

PRINT 620s (AUP(1is L= 108
620 FORMATISXLIOMAIR(L=-0) 0Flacds /)

CONTINUF THF SFARCH
60 T0 300
700 CONTINUE

FINAL PRINTOUT - USED MOSTLY FOR DERUGGING'

800 PRINT
rRINT
PRINT

sRinY

PRIWNT
PRiNY
PRIRY
PRINTY
PRINTY
PRINT
PRINY

801s (AL2)e Is 14 100

001e (BIV)s 1s Yy 1N6Y

00t ttCiT:12e100 ll“!o!Olo"ﬂlolA)e¥1=1033
801, iDI1Yy Is]l,e18) .
B0Ly DAeDB BT HDDNEeDF

831y (ADUIYs Ie 1o11y

R01s (ACLYSe 101010y

801 (STGXIT)y Telel )

801y (AK{1}3y 18] e®)

B01s (WAINMY)y Mely MN} :
00)e LIWIMIN]y Mol o)y No2,6)

801 FORMATIING/{10F1%,%))

PRINT

8029 AM,y X

802 FORMAT(IHN/ €20.%¢ 1% |

6o T0
900 PRINT

1000
“Ale MLOOP

901 'OQNATOlHOXOIlCQAﬂNﬂlﬂftlbfh VALUFSs SFaARIH STOREER, ' '

6n YO

700

1000 CONTINUF
1100 CaLL FxiY

END




I

a

SURRQUTINF USFD ¥1TH THIS PROGRAM
SURROUTINF S1GMA
LIST
DIMENSION Ct10912e2)19A0100)4ACII0)« TAXITZ2)9RANK(AL1IN0)$AJRIAY,
1 ACCUI01sDFLIING) oW 10NS) yWA 10N WM [ANY AN 1Y
COMMON KoFTA21 oETAZ22 ¢AIMIC oApSTIGR gRANK G AUR AT yACTyDEL oMN oW owh iy AT
LeNTRoTA

CALCULATE THF MEAN SQUARE VALUE "N FACH ~ac”
DO 170 1= 1, 7
190 ACtTI+) = ETA2121C LI oKyl )AL OYRC 14T 4K 31 )+A{TIRC [ TAD4K 1)
1 YSFTAZ28(C (T oK o2V 4A10180 1181 4K o212 014087 (747,02 !
AC ?2)Ym FTAQI®A(TYI® " {1aK o1} 4STAZ2RA[1L)% (14K ,42)
ACt3y= ETA214%¢ APTIRCI24C a1 ) 4A(AYRC 1 4yKsY))4FTADDY
1¢ AL1GIRC(24Ke2)+AI)R7(1,X,2))
DO 200 M=z]1 ,MN
Cle ACI2 18w M 21 4AC {510 W (M3 +AC(TIBW M )SAC(O)BA(M 5]
“om WAIMIRIACIZ2I4AC () RWIM 2 +ACIE&)RWIM ) +AC[AR)BWIMyL)+ACI 1N ) ®
1 WiMy,5)
200 WiMYyw [(CIBwDaC2802)/DFL(M)
SIGXIK)= HIYYSWA()
DO 210 Ma2 oMN
210 SIGX(IKYm SIAXIK )+ {H (M) yam(ia) ) B (WA (My—Wa MYy
SIGXIK s SIANIK) /3,1415%9

CALCULATE AJ FOR THE FIRST 8 MFAN SOUARS VALUFS
250 1FIK=8) 260+ 2804 ANOD
260 NO 300 IR= 2, NIR
{Rs]IR
IFI(RANKIKsIR) -~ SIGX(K)) 300 310, 210
3N0 CONTINUF
301 =0
GO TO a0N
31" AlIRs IR
AJRIK)® ATR=2,+{STIGXIKI=RANK(KgTR=T1))/{RANK (K 4 [PY=RANK (K, T2=1))

IF THIS VALUF OF AJ 1S LFSS THAN THFE PRFVIOUS MINIMUM, CONTINUF TMF
CALCULATIONSs OTHERWISF NETFRMINE A NFw SFT OF CONTROL PARAMETFESC
TFIAJRIKIZAJM —= ACCULTAY) &0, 301s 301
400 RETURN

END
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